Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cytotherapy ; 25(8): 847-857, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097266

RESUMO

BACKGROUND AIMS: Extracellular vesicles (EVs), including exosomes and microvesicles, are released by almost all cells and found in all body fluids. Unknown proportions of EVs transmit specific information from their cells of origin to specific target cells and are key mediators in intercellular communication processes. Depending on their origin, EVs can modulate immune responses, either acting as pro- or anti-inflammatory. With the aim to analyze the immunomodulating activities of EV preparations, especially those from mesenchymal stromal cells (MSCs) in vitro, a multi-donor mixed lymphocyte reaction (mdMLR) assay was established and stressed for its reproducibility. METHODS: To this end, human peripheral blood-derived mononuclear cells (PBMCs) of 12 different healthy donors were pooled warranting mutual allogeneic cross-reactivity, even following an optimized freezing and thawing procedure. After thawing, mixed PBMCs were cultured for 5 days in the absence or presence of EVs to be tested. Reflecting allogeneic reactions, in the absence of EVs, pooled PBMCs form characteristic satellite colonies whose appearance can be modulated by EVs. More quantifiable, the strength of the allogenic reaction is reflected by the content of activated CD4 and CD8 T cells being recognized by means of their CD25 and CD54 expression. RESULTS: Of note, connected to the use of primary cells, independent multi-donor PBMC pools differed in their capability to activate their cultured T cells. Thus, throughout the study, only pooled PBMC batches were used whose activated T-cell contents exceeded 25% of the total T-cell population at culture day 5 and whose contents were reproducibly reduced in the presence of immunomodulatory active MSC-EVs. T-cell activation-suppressing effects of the MSC-EV preparations tested were in all cases accompanied by the impact on monocytes. In the presence of immunomodulatory active MSC-EVs, more monocytes were harvested from mdMLR cultures than in their absence. Furthermore, in the absence of immunomodulatory EVs, most monocytes appeared as non-classical (CD14+CD16+) monocytes, whereas immunomodulatory active MSC-EVs promoted the appearance of classical (CD14++CD16-) and intermediate (CD14++CD16+) monocyte subpopulations. CONCLUSIONS: Overall, the obtained results qualify the mdMLR assay as a robust experimental tool for the evaluation of immunomodulatory potentials of given MSC-EV samples. However, further assay development is required to develop and qualify an authority-acceptable potency assay for clinically applicable MSC-EV products.


Assuntos
Vesículas Extracelulares , Leucócitos Mononucleares , Humanos , Teste de Cultura Mista de Linfócitos , Reprodutibilidade dos Testes , Vesículas Extracelulares/metabolismo , Imunidade
2.
Cytotherapy ; 25(8): 821-836, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055321

RESUMO

BACKGROUND AIMS: Extracellular vesicles (EVs) harvested from conditioned media of human mesenchymal stromal cells (MSCs) suppress acute inflammation in various disease models and promote regeneration of damaged tissues. After successful treatment of a patient with acute steroid-refractory graft-versus-host disease (GVHD) using EVs prepared from conditioned media of human bone marrow-derived MSCs, this study focused on improving the MSC-EV production for clinical application. METHODS: Independent MSC-EV preparations all produced according to a standardized procedure revealed broad immunomodulatory differences. Only a proportion of the MSC-EV products applied effectively modulated immune responses in a multi-donor mixed lymphocyte reaction (mdMLR) assay. To explore the relevance of such differences in vivo, at first a mouse GVHD model was optimized. RESULTS: The functional testing of selected MSC-EV preparations demonstrated that MSC-EV preparations revealing immunomodulatory capabilities in the mdMLR assay also effectively suppress GVHD symptoms in this model. In contrast, MSC-EV preparations, lacking such in vitro activities, also failed to modulate GVHD symptoms in vivo. Searching for differences of the active and inactive MSC-EV preparations, no concrete proteins or miRNAs were identified that could serve as surrogate markers. CONCLUSIONS: Standardized MSC-EV production strategies may not be sufficient to warrant manufacturing of MSC-EV products with reproducible qualities. Consequently, given this functional heterogeneity, every individual MSC-EV preparation considered for the clinical application should be evaluated for its therapeutic potency before administration to patients. Here, upon comparing immunomodulating capabilities of independent MSC-EV preparations in vivo and in vitro, we found that the mdMLR assay was qualified for such analyses.


Assuntos
Vesículas Extracelulares , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Animais , Camundongos , Meios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Enxerto-Hospedeiro/terapia , Células-Tronco Mesenquimais/metabolismo
3.
Nat Methods ; 14(3): 228-232, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245209

RESUMO

We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice.


Assuntos
Pesquisa Biomédica , Bases de Dados Bibliográficas , Vesículas Extracelulares/fisiologia , Internacionalidade
4.
Cytometry A ; 97(6): 602-609, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32415810

RESUMO

Extracellular vesicles (EVs) are released from basically all cells. Over the last decade, small EVs (sEVs; 50-150 nm) have gained enormous attention in diagnostics and therapy. However, methodological limitations coupled to the lack of EV standards leave many questions in this quickly evolving field unresolved. Recently, by using enhanced green fluorescent protein (eGFP)-labeled sEVs as biological reference material, we systematically optimized imaging flow cytometry for single sEV analysis. Furthermore, we showed that sEVs stained with different fluorescent antibodies can be analyzed in a multiparametric manner. However, many parameters potentially affecting the sEV staining procedure still require further evaluation and optimization. Here, we present a concise, systematic evaluation of the impact of the incubation temperature (4°C, room temperature and 37°C) during sEV antibody staining on the outcome of experiments involving the staining of EVs with fluorescence-conjugated antibodies. We provide evidence that both the staining intensity and the sample recovery can vary depending on the incubation temperature applied, and that observed differences are less pronounced following prolonged incubation times. In addition, this study can serve as an application-specific example of parameter evaluation in EV flow cytometry. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Vesículas Extracelulares , Anticorpos , Citometria de Fluxo , Coloração e Rotulagem , Temperatura
5.
Int J Mol Sci ; 18(7)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684664

RESUMO

Extracellular vesicles (EVs), such as exosomes and microvesicles, have been identified as mediators of a newly-discovered intercellular communication system. They are essential signaling mediators in various physiological and pathophysiological processes. Depending on their origin, they fulfill different functions. EVs of mesenchymal stem/stromal cells (MSCs) have been found to promote comparable therapeutic activities as MSCs themselves. In a variety of in vivo models, it has been observed that they suppress pro-inflammatory processes and reduce oxidative stress and fibrosis. By switching pro-inflammatory into tolerogenic immune responses, MSC-EVs very likely promote tissue regeneration by creating a pro-regenerative environment allowing endogenous stem and progenitor cells to successfully repair affected tissues. Accordingly, MSC-EVs provide a novel, very promising therapeutic agent, which has already been successfully applied to humans. However, the MSC-EV production process has not been standardized, yet. Indeed, a collection of different protocols has been used for the MSC-EV production, characterization and application. By focusing on kidney, heart, liver and brain injuries, we have reviewed the major outcomes of published MSC-EV in vivo studies.


Assuntos
Vesículas Extracelulares/imunologia , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Células-Tronco Mesenquimais/citologia , Animais , Vesículas Extracelulares/transplante , Humanos , Fatores Imunológicos/imunologia , Células-Tronco Mesenquimais/imunologia
6.
J Extracell Vesicles ; 12(2): e12299, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759917

RESUMO

Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo/métodos , Reprodutibilidade dos Testes
7.
J Extracell Vesicles ; 9(1): 1713526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32128070

RESUMO

Extracellular vesicles (EVs) are small, heterogeneous and difficult to measure. Flow cytometry (FC) is a key technology for the measurement of individual particles, but its application to the analysis of EVs and other submicron particles has presented many challenges and has produced a number of controversial results, in part due to limitations of instrument detection, lack of robust methods and ambiguities in how data should be interpreted. These complications are exacerbated by the field's lack of a robust reporting framework, and many EV-FC manuscripts include incomplete descriptions of methods and results, contain artefacts stemming from an insufficient instrument sensitivity and inappropriate experimental design and lack appropriate calibration and standardization. To address these issues, a working group (WG) of EV-FC researchers from ISEV, ISAC and ISTH, worked together as an EV-FC WG and developed a consensus framework for the minimum information that should be provided regarding EV-FC. This framework incorporates the existing Minimum Information for Studies of EVs (MISEV) guidelines and Minimum Information about a FC experiment (MIFlowCyt) standard in an EV-FC-specific reporting framework (MIFlowCyt-EV) that supports reporting of critical information related to sample staining, EV detection and measurement and experimental design in manuscripts that report EV-FC data. MIFlowCyt-EV provides a structure for sharing EV-FC results, but it does not prescribe specific protocols, as there will continue to be rapid evolution of instruments and methods for the foreseeable future. MIFlowCyt-EV accommodates this evolution, while providing information needed to evaluate and compare different approaches. Because MIFlowCyt-EV will ensure consistency in the manner of reporting of EV-FC studies, over time we expect that adoption of MIFlowCyt-EV as a standard for reporting EV- FC studies will improve the ability to quantitatively compare results from different laboratories and to support the development of new instruments and assays for improved measurement of EVs.

8.
J Extracell Vesicles ; 8(1): 1587567, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949308

RESUMO

Extracellular vesicles (EVs) mediate targeted cellular interactions in normal and pathophysiological conditions and are increasingly recognised as potential biomarkers, therapeutic agents and drug delivery vehicles. Based on their size and biogenesis, EVs are classified as exosomes, microvesicles and apoptotic bodies. Due to overlapping size ranges and the lack of specific markers, these classes cannot yet be distinguished experimentally. Currently, it is a major challenge in the field to define robust and sensitive technological platforms being suitable to resolve EV heterogeneity, especially for small EVs (sEVs) with diameters below 200 nm, i.e. smaller microvesicles and exosomes. Most conventional flow cytometers are not suitable for the detection of particles being smaller than 300 nm, and the poor availability of defined reference materials hampers the validation of sEV analysis protocols. Following initial reports that imaging flow cytometry (IFCM) can be used for the characterisation of larger EVs, we aimed to investigate its usability for the characterisation of sEVs. This study set out to identify optimal sample preparation and instrument settings that would demonstrate the utility of this technology for the detection of single sEVs. By using CD63eGFP-labelled sEVs as a biological reference material, we were able to define and optimise IFCM acquisition and analysis parameters on an Amnis ImageStreamX MkII instrument for the detection of single sEVs. In addition, using antibody-labelling approaches, we show that IFCM facilitates robust detection of different EV and sEV subpopulations in isolated EVs, as well as unprocessed EV-containing samples. Our results indicate that fluorescently labelled sEVs as biological reference material are highly useful for the optimisation of fluorescence-based methods for sEV analysis. Finally, we propose that IFCM will help to significantly increase our ability to assess EV heterogeneity in a rigorous and reproducible manner, and facilitate the identification of specific subsets of sEVs as useful biomarkers in various diseases.

9.
J Extracell Vesicles ; 7(1): 1528109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357008

RESUMO

Extracellular vesicles (EVs) provide a complex means of intercellular signalling between cells at local and distant sites, both within and between different organs. According to their cell-type specific signatures, EVs can function as a novel class of biomarkers for a variety of diseases, and can be used as drug-delivery vehicles. Furthermore, EVs from certain cell types exert beneficial effects in regenerative medicine and for immune modulation. Several techniques are available to harvest EVs from various body fluids or cell culture supernatants. Classically, differential centrifugation, density gradient centrifugation, size-exclusion chromatography and immunocapturing-based methods are used to harvest EVs from EV-containing liquids. Owing to limitations in the scalability of any of these methods, we designed and optimised a polyethylene glycol (PEG)-based precipitation method to enrich EVs from cell culture supernatants. We demonstrate the reproducibility and scalability of this method and compared its efficacy with more classical EV-harvesting methods. We show that washing of the PEG pellet and the re-precipitation by ultracentrifugation remove a huge proportion of PEG co-precipitated molecules such as bovine serum albumine (BSA). However, supported by the results of the size exclusion chromatography, which revealed a higher purity in terms of particles per milligram protein of the obtained EV samples, PEG-prepared EV samples most likely still contain a certain percentage of other non-EV associated molecules. Since PEG-enriched EVs revealed the same therapeutic activity in an ischemic stroke model than corresponding cells, it is unlikely that such co-purified molecules negatively affect the functional properties of obtained EV samples. In summary, maybe not being the purification method of choice if molecular profiling of pure EV samples is intended, the optimised PEG protocol is a scalable and reproducible method, which can easily be adopted by laboratories equipped with an ultracentrifuge to enrich for functional active EVs.

10.
Front Immunol ; 9: 1326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951064

RESUMO

Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell's activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA