Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Inorg Chem ; 62(31): 12203-12212, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37487202

RESUMO

The MSb2 compounds with M = Cr, Fe, Ru, and Os have been investigated under high pressures by synchrotron powder X-ray diffraction. All compounds, except CrSb2, were found to retain the marcasite structure up to the highest pressures (more than 50 GPa). In contrast, we found that CrSb2 has a structural phase transition around 10 GPa to a metastable, MoP2-type structure with Cr coordinated to seven Sb atoms. In addition, we compared ambient temperature compression with laser-heating experiments and found that laser-heating at pressures below and above this phase transition results in the known CuAl2-type structure. Density functional theory calculations show that this tetragonal structure is the most stable in the whole pressure interval. However, a crossing of the marcasite's and MoP2-like structure's enthalpies occurs between 5 and 7.5 GPa, which is in good agreement with the experimental data. The phase transition to the MoP2-type structure observed in this work opens up for discovering other compounds with this new transition pathway from the marcasite structure.

2.
Inorg Chem ; 61(48): 19088-19096, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383925

RESUMO

Using a recently developed method for in situ high-pressure, laser heating experiments in diamond anvil cells, we obtained a novel post-perovskite phase of SrOsO3. The phase transition from perovskite SrOsO3 was induced at 44 GPa and 1350 K in a diamond anvil cell and characterized with synchrotron powder X-ray diffraction. The newly obtained post-perovskite is quenchable and Le Bail refinements under ambient conditions yielded the unit cell parameters: a = 3.152(9) Å, b = 10.82(2) Å, c = 7.27(1) Å, V = 248.1(1) Å3. In addition, the compression of perovskite SrOsO3 at ambient temperature was investigated up to 66 GPa in a diamond anvil cell using synchrotron powder X-ray diffraction. The compression at ambient temperature showed that pressure alone does not induce the first-order phase transition to the post-perovskite structure. However, at 36 GPa, a continuous phase transition to monoclinic (P21/n) symmetry was detected, persistent up to 58 GPa, where the perovskite transitioned back to orthorhombic (Pbnm) symmetry. Fitting a third-order Birch-Murnaghan equation of state to the obtained P-V data for perovskite SrOsO3 yielded a bulk modulus of K0 = 187.4(15) GPa. Density functional theory calculations were performed to support the experimental findings in the compression study at ambient temperature. This work shows that transformations to the post-perovskite structure can be obtained for a wider range of perovskites than simple empirical rules otherwise suggest.

3.
Phys Chem Chem Phys ; 23(46): 26401-26406, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792074

RESUMO

The bulk band structure of the topological insulator Sb2Te3 is investigated by angle-resolved photoemission spectroscopy. Of particular interest is the dispersion of the uppermost valence band with respect to the topological surface state Dirac point. The valence band maximum has been calculated to be either near the Brillouin zone centre or in a low-symmetry position in the -M̄ azimuthal direction. In order to observe the full energy range of the valence band, the strongly p-doped crystals are counter-doped by surface alkali adsorption. The data show that the absolute valence band maximum is likely to be found at the bulk Γ point and predictions of a low-symmetry position with an energy higher than the surface Dirac point can be ruled out.

4.
Phys Chem Chem Phys ; 23(13): 7806-7813, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33136112

RESUMO

We present an experimental study of inelastic scattering processes on the (111) surface of the topological insulator Sb2Te3 using helium atom scattering. In contrast to other binary topological insulators such as Bi2Se3 and Bi2Te3, Sb2Te3 is much less studied and the as-grown Sb2Te3 sample turns out to be p-doped, with the Fermi-level located below the Dirac-point as confirmed by angle-resolved photoemission spectroscopy. We report the surface phonon dispersion along both high symmetry directions in the energy region below 11 meV, where the Rayleigh mode exhibits the strongest intensity. The experimental data is compared with a study based on density functional perturbation theory calculations, providing good agreement except for a set of additional peculiar inelastic events below the Rayleigh mode. In addition, an analysis of angular scans with respect to a number of additional inelastic events is presented, including resonance enhancement, kinematical focusing, focused inelastic resonance and surfing. In the latter case, phonon-assisted adsorption of the incident helium atom gives rise to a bound state where the helium atom rides the created Rayleigh wave.

5.
Inorg Chem ; 59(21): 15780-15787, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131276

RESUMO

We report a new in situ synthesis method effective for discovery of high-oxidation-state materials using laser-heated diamond anvil cells. The issue of chemical reduction during thermally induced phase transitions that occur spontaneously in a noble gas pressure transmitting media (PTM) can be overcome by thermal decomposition of an oxygen-rich solid PTM (NaCl + NaClO3). To illustrate the technical challenges the method overcomes, we applied this new method for two known pentavalent A(I)B(V)O3 postperovskite compounds. We successfully synthesized the two postperovskites, NaOsO3 and NaIrO3, and quenched to ambient conditions. Furthermore, we report the discovery of a new low-pressure polymorph of NaIrO3, illustrating the high potential for new materials discovery. This new method will enable realization of new high-oxidation-state postperovskites and can be applied for many other structure families in a P, T parameter space that is not easily accessible using conventional high-pressure synthesis methods.

6.
Inorg Chem ; 58(9): 5503-5517, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31013080

RESUMO

Synthesis, crystal structures, and thermal and magnetic properties of the complete series of halide-free rare-earth (RE) metal borohydrides are presented. A new synthesis method provides high yield and high purity products. Fifteen new metal borohydride structures are reported. The trends in crystal structures, thermal behavior, and magnetic properties for the entire series of RE(BH4) x are compared and discussed. The RE(BH4) x possess a very rich crystal chemistry, dependent on the oxidation state and the ionic size of the rare-earth ion. Due to the lanthanide contraction, there is a significant decrease in the volume of the RE3+-ion with increasing atomic number, which correlates linearly with the unit cell volume of the α- and ß-RE(BH4)3 polymorphs and the solvated complexes α-RE(BH4)3·S(CH3)2. The thermal analysis reveals a one-step decomposition pathway in the temperature range from 247 to 277 °C for all RE(BH4)3 except Lu(BH4)3, which follows a three-step decomposition pathway. In contrast, the RE(BH4)2 decompose at higher temperatures in the range 306 to 390 °C due to lower charge density on the rare-earth ion. The RE(BH4)3 show increasing stability with increasing Pauling electronegativity, which contradicts other main group and transition metal borohydrides. The majority of the compounds follow Curie-Weiss paramagnetic behavior down to 3 K with weak antiferromagnetic interactions and magnetic moments in accord with those of isolated 4f ions. Some of the RE(BH4) x display varying degrees of temperature-dependent magnetic moments due to low-lying excited stated induced by crystal field effects. Additionally, a weak antiferromagnetic ordering is observed in Gd(BH4)3, indicating superexchange through a borohydride group.

7.
Angew Chem Int Ed Engl ; 56(35): 10367-10372, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28670829

RESUMO

Using quasi-simultaneous in situ PXRD and XANES, the direct correlation between the oxidation state of Cu ions in the commercially relevant deNOx NH3 -SCR zeolite catalyst Cu-CHA and the Cu ion migration in the zeolitic pores was revealed during catalytic activation experiments. A comparison with recent reports further reveals the high sensitivity of the redox-active centers concerning heating rates, temperature, and gas environment during catalytic activation. Previously, Cu+ was confirmed present only in the 6R. Results verify a novel 8R monovalent Cu site, an eventually large Cu+ presence upon heating to high temperatures in oxidative conditions, and demonstrate the unique potential in combining in situ PXRD and XANES techniques, with which both oxidation state and structural location of the redox-active centers in the zeolite framework could be tracked.

8.
Nano Lett ; 14(7): 3755-60, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24940641

RESUMO

Topological insulators are guaranteed to support metallic surface states on an insulating bulk, and one should thus expect that the electronic transport in these materials is dominated by the surfaces states. Alas, due to the high remaining bulk conductivity, it is challenging to achieve surface-dominated transport. Here we use nanoscale four-point setups with a variable contact distance on an atomically clean surface of bulk-insulating Bi2Te2Se. We show that the transport at 30 K is two-dimensional rather than three-dimensional, that is, surface-dominated, and we find a surface state mobility of 390(30) cm(2) V(-1) s(-1) at 30 K at a carrier concentration of 8.71(7) × 10(12) cm(-2).

9.
Phys Rev Lett ; 110(16): 166402, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679626

RESUMO

A paramagnetic metal to nonmagnetic insulator transition at T(MIT)=210 K is reported for the ß-pyrochlore oxide CsW(2)O(6), accompanied by a first order structural transition that creates <110> oriented chains in the pyrochlore lattice. Comparison of CsW(2)O(6), which has 1 electron per 2 W sites, to the fully d(0) analog CsTaWO(6) shows that the transitions are electronically driven. Corefinement of high resolution synchrotron x-ray and neutron diffraction data shows that the structural distortion that creates the W chains cannot be attributed to simple charge or orbital ordering. Density functional theory calculations suggest that the phase transition is driven by a sharply peaked electronic density of states near the Fermi energy in the cubic ß-pyrochlore phase. A further electronic instability is required to create the insulating ground state.

10.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770437

RESUMO

While parallel segments in the Fermi level contours, often found at the surfaces of topological insulators (TIs), would imply "strong" nesting conditions, the existence of charge-density waves (CDWs)-periodic modulations of the electron density-has not been verified up to now. Here, we report the observation of a CDW at the surface of the TI Bi2Te2Se(111), below ≈350K, by helium-atom scattering and, thus, experimental evidence for a CDW involving Dirac topological electrons. Deviations of the order parameter observed below 180K, and a low-temperature break of time reversal symmetry, suggest the onset of a spin-density wave with the same period as the CDW in the presence of a prominent electron-phonon interaction, originating from Rashba spin-orbit coupling.

11.
Front Chem ; 11: 1249290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033467

RESUMO

We present a detailed helium atom scattering study of the charge-density wave (CDW) system and transition metal dichalcogenide 1T-TaS2. In terms of energy dissipation, we determine the electron-phonon (e-ph) coupling, a quantity that is at the heart of conventional superconductivity and may even "drive" phase transitions such as CDWs. The e-ph coupling of TaS2 in the commensurate CDW phase (λ = 0.59 ± 0.12) is compared with measurements of the topo-logical insulator TlBiTe2 (λ = 0.09 ± 0.01). Furthermore, by means of elastic He diffraction and resonance/interference effects in He scattering, the thermal expansion of the surface lattice, the surface step height, and the three-dimensional atom-surface interaction potential are determined including the electronic corrugation of 1T-TaS2. The linear thermal expansion coefficient is similar to that of other transition-metal dichalcogenides. The He-TaS2 interaction is best described by a corrugated Morse potential with a relatively large well depth and supports a large number of bound states, comparable to the surface of Bi2Se3, and the surface electronic corrugation of 1T-TaS2 is similar to the ones found for semimetal surfaces.

12.
ACS Appl Mater Interfaces ; 15(5): 7294-7307, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705637

RESUMO

Lead halide perovskites are promising candidates for high-performance light-emitting diodes (LEDs); however, their applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated formamidinium lead bromide (FAPbBr3) nanocrystals (NCs) substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and water-treated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.

13.
Adv Mater ; 35(36): e2301907, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37204117

RESUMO

Modification of the electronic structure of quantum matter by ad atom deposition allows for directed fundamental design of electronic and magnetic properties. This concept is utilized in the present study in order to tune the surface electronic structure of magnetic topological insulators based on MnBi2 Te4 . The topological bands of these systems are typically strongly electron-doped and hybridized with a manifold of surface states that place the salient topological states out of reach of electron transport and practical applications. In this study, micro-focused angle-resolved photoemission spectroscopy (microARPES) provides direct access to the termination-dependent dispersion of MnBi2 Te4 and MnBi4 Te7 during in situ deposition of rubidium atoms. The resulting band structure changes are found to be highly complex, encompassing coverage-dependent ambipolar doping effects, removal of surface state hybridization, and the collapse of a surface state band gap. In addition, doping-dependent band bending is found to give rise to tunable quantum well states. This wide range of observed electronic structure modifications can provide new ways to exploit the topological states and the rich surface electronic structures of manganese bismuth tellurides.

14.
Nat Commun ; 11(1): 278, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937778

RESUMO

The microscopic motion of water is a central question, but gaining experimental information about the interfacial dynamics of water in fields such as catalysis, biophysics and nanotribology is challenging due to its ultrafast motion, and the complex interplay of inter-molecular and molecule-surface interactions. Here we present an experimental and computational study of the nanoscale-nanosecond motion of water at the surface of a topological insulator (TI), Bi[Formula: see text]Te[Formula: see text]. Understanding the chemistry and motion of molecules on TI surfaces, while considered a key to design and manufacturing for future applications, has hitherto been hardly addressed experimentally. By combining helium spin-echo spectroscopy and density functional theory calculations, we are able to obtain a general insight into the diffusion of water on Bi[Formula: see text]Te[Formula: see text]. Instead of Brownian motion, we find an activated jump diffusion mechanism. Signatures of correlated motion suggest unusual repulsive interactions between the water molecules. From the lineshape broadening we determine the diffusion coefficient, the diffusion energy and the pre-exponential factor.

15.
Adv Mater ; 32(40): e2001878, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32864757

RESUMO

Lead-free double perovskites have great potential as stable and nontoxic optoelectronic materials. Recently, Cs2 AgBiBr6 has emerged as a promising material, with suboptimal photon-to-charge carrier conversion efficiency, yet well suited for high-energy photon-detection applications. Here, the optoelectronic and structural properties of pure Cs2 AgBiBr6 and alkali-metal-substituted (Cs1- x Yx )2 AgBiBr6 (Y: Rb+ , K+ , Na+ ; x = 0.02) single crystals are investigated. Strikingly, alkali-substitution entails a tunability to the material system in its response to X-rays and structural properties that is most strongly revealed in Rb-substituted compounds whose X-ray sensitivity outperforms other double-perovskite-based devices reported. While the fundamental nature and magnitude of the bandgap remains unchanged, the alkali-substituted materials exhibit a threefold boost in their fundamental carrier recombination lifetime at room temperature. Moreover, an enhanced electron-acoustic phonon scattering is found compared to Cs2 AgBiBr6 . The study thus paves the way for employing cation substitution to tune the properties of double perovskites toward a new material platform for optoelectronics.

16.
Chemistry ; 15(48): 13381-90, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19882596

RESUMO

Boehmite (AlOOH) nanoparticles have been synthesized in subcritical (300 bar, 350 degrees C) and supercritical (300 bar, 400 degrees C) water. The formation and growth of AlOOH nanoparticles were studied in situ by small- and wide-angle X-ray scattering (SAXS and WAXS) using 80 keV synchrotron radiation. The SAXS/WAXS data were measured simultaneously with a time resolution greater than 10 s and revealed the initial nucleation of amorphous particles takes place within 10 s with subsequent crystallization after 30 s. No diffraction signals were observed from Al(OH)(3) within the time resolution of the experiment, which shows that the dehydration step of the reaction is fast and the hydrolysis step rate-determining. The sizes of the crystalline particles were determined as a function of time. The overall size evolution patterns are similar in sub- and supercritical water, but the growth is faster and the final particle size larger under supercritical conditions. After approximately 5 min, the rate of particle growth decreases in both sub- and supercritical water. Heating of the boehmite nanoparticle suspension allowed an in situ X-ray investigation of the phase transformation of boehmite to aluminium oxide. Under the wet conditions used in this work, the transition starts at 530 degrees C and gives a two-phase product of hydrated and non-hydrated aluminium oxide.

17.
Angew Chem Int Ed Engl ; 48(26): 4788-91, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19475590

RESUMO

A general solution: In situ synchrotron X-ray scattering in a high-pressure pulsed injection reactor (see picture) shows that magnetite nucleation and growth are temporally separated. Gram-scale crystalline, pure phase, superparamagnetic magnetite nanoparticles were synthesized without surfactants in supercritical water in less than one hour using a laboratory-scale continuous-flow reactor.

18.
J Phys Chem C Nanomater Interfaces ; 123(29): 17829-17841, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31608131

RESUMO

We present a study of the atom-surface interaction potential for the He-Bi2Se3(111) system. Using selective adsorption resonances, we are able to obtain the complete experimental band structure of atoms in the corrugated surface potential of the topological insulator Bi2Se3. He atom scattering spectra show several selective adsorption resonance features that are analyzed, starting with the free-atom approximation and a laterally averaged atom-surface interaction potential. Based on quantum mechanical calculations of the He-surface scattering intensities and resonance processes, we are then considering the three-dimensional atom-surface interaction potential, which is further refined to reproduce the experimental data. Following this analysis, the He-Bi2Se3(111) interaction potential is best represented by a corrugated Morse potential with a well depth of D = (6.54 ± 0.05) meV, a stiffness of κ = (0.58 ± 0.02) Å-1, and a surface electronic corrugation of (5.8 ± 0.2)% of the lattice constant. The experimental data may also be used as a challenging benchmark system to analyze the suitability of several van der Waals approaches: the He-Bi2Se3(111) interaction captures the fundamentals of weak adsorption systems where the binding is governed by long-range electronic correlations.

19.
Adv Mater ; 31(24): e1900521, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31034108

RESUMO

The extraordinary properties of lead-halide perovskite materials have spurred intense research, as they have a realistic perspective to play an important role in future photovoltaic devices. It is known that these materials undergo a number of structural phase transitions as a function of temperature that markedly alter their optical and electronic properties. The precise phase transition temperature and exact crystal structure in each phase, however, are controversially discussed in the literature. The linear thermal expansion of single crystals of APbX3 (A = methylammonium (MA), formamidinium (FA); X = I, Br) below room temperature is measured using a high-resolution capacitive dilatometer to determine the phase transition temperatures. For δ-FAPbI3 , two wide regions of negative thermal expansion below 173 and 54 K, and a cascade of sharp transitions for FAPbBr3 that have not previously been reported are uncovered. Their respective crystal phases are identified via powder X-ray diffraction. Moreover, it is demonstrated that transport under steady-state illumination is considerably altered at the structural phase transition in the MA compounds. The results provide advanced insights into the evolution of the crystal structure with decreasing temperature that are essential to interpret the growing interest in investigating the electronic, optical, and photonic properties of lead-halide perovskite materials.

20.
Nanoscale ; 10(30): 14627-14636, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30028450

RESUMO

We present a combined experimental and theoretical study of the surface vibrational modes of the topological insulator Bi2Te3. Using high-resolution helium-3 spin-echo spectroscopy we are able to resolve the acoustic phonon modes of Bi2Te3(111). The low energy region of the lattice vibrations is mainly dominated by the Rayleigh mode which has been claimed to be absent in previous experimental studies. The appearance of the Rayleigh mode is consistent with previous bulk lattice dynamics studies as well as theoretical predictions of the surface phonon modes. Density functional perturbation theory calculations including van der Waals corrections are in excellent agreement with the experimental data. Comparison of the experimental results with theoretically obtained values for films with a thickness of several layers further demonstrate, that for an accurate theoretical description of three-dimensional topological insulators with their layered structure the inclusion of van der Waals corrections is essential. The presence of a prominent surface acoustic wave and the contribution of van der Waals bonding to the lattice dynamics may hold important implications for the thermoelectric properties of thin-film and nanoscale devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA