Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946547

RESUMO

Søren Brøgger Christensen isolated and characterized the cell-penetrant sesquiterpene lactone Thapsigargin (TG) from the fruit Thapsia garganica. In the late 1980s/early 1990s, TG was supplied to multiple independent and collaborative groups. Using this TG, studies documented with a large variety of mammalian cell types that TG rapidly (i.e., within seconds to a minute) penetrates cells, resulting in an essentially irreversible binding and inhibiting (IC50~10 nM) of SERCA 2b calcium uptake pumps. If exposure to 50-100 nM TG is sustained for >24-48 h, prostate cancer cells undergo apoptotic death. TG-induced death requires changes in the cytoplasmic Ca2+, initiating a calmodulin/calcineurin/calpain-dependent signaling cascade that involves BAD-dependent opening of the mitochondrial permeability transition pore (MPTP); this releases cytochrome C into the cytoplasm, activating caspases and nucleases. Chemically unmodified TG has no therapeutic index and is poorly water soluble. A TG analog, in which the 8-acyl groups is replaced with the 12-aminododecanoyl group, afforded 12-ADT, retaining an EC50 for killing of <100 nM. Conjugation of 12-ADT to a series of 5-8 amino acid peptides was engineered so that they are efficiently hydrolyzed by only one of a series of proteases [e.g., KLK3 (also known as Prostate Specific Antigen); KLK2 (also known as hK2); Fibroblast Activation Protein Protease (FAP); or Folh1 (also known as Prostate Specific Membrane Antigen)]. The obtained conjugates have increased water solubility for systemic delivery in the blood and prevent cell penetrance and, thus, killing until the TG-prodrug is hydrolyzed by the targeting protease in the vicinity of the cancer cells. We summarize the preclinical validation of each of these TG-prodrugs with special attention to the PSMA TG-prodrug, Mipsagargin, which is in phase II clinical testing.


Assuntos
Antineoplásicos , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Pró-Fármacos , Tapsigargina , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Humanos , Pró-Fármacos/farmacocinética , Pró-Fármacos/uso terapêutico , Tapsigargina/farmacocinética , Tapsigargina/uso terapêutico
2.
Prostate ; 78(11): 819-829, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29659051

RESUMO

BACKGROUND: Prostate cancer cells produce high levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the tumor microenvironment but is presumed to be enzymatically inactive in the blood due to complex formation with serum protease inhibitors α-1-antichymotrypsin and α-2-macroglobulin (A2M). PSA-A2M complexes cannot be measured by standard ELISA assays and are also rapidly cleared from the circulation. Thus the exact magnitude of PSA production by prostate cancer cells is not easily measured. The PSA complexed to A2M is unable to cleave proteins but maintains the ability to cleave small peptide substrates. Thus, in advanced prostate cancer, sufficient PSA-A2M may be in circulation to effect total A2M levels, levels of cytokines bound to A2M and hydrolyze small circulating peptide hormones. METHODS: Total A2M levels in men with advanced prostate cancer and PSA levels above 1000 ng/mL were measured by ELISA and compared to controls. Additional ELISA assays were used to measure levels of IL-6 and TGF-beta which can bind to A2M. The ability of PSA-A2M complexes to hydrolyze protein and peptide substrates was analyzed ± PSA inhibitor. Enzymatic activity of PSA-A2M in serum of men with high PSA levels was also assayed. RESULTS: Serum A2M levels are inversely correlated with PSA levels in men with advanced prostate cancer. Il-6 Levels are significantly elevated in men with PSA >1000 ng/mL compared to controls with PSA <0.1 ng/mL. PSA-A2M complex in serum of men with PSA levels >1000 ng/mL can hydrolyze small fluorescently labeled peptide substrates but not large proteins that are PSA substrates. PSA can hydrolyze small peptide hormones like PTHrP and osteocalcin. PSA complexed to A2M retains the ability to degrade PTHrP. CONCLUSIONS: In advanced prostate cancer with PSA levels >1000 ng/mL, sufficient PSA-A2M is present in circulation to produce enzymatic activity against circulating small peptide hormones. Sufficient PSA is produced in advanced prostate cancer to alter total A2M levels, which can potentially alter levels of a variety of growth factors such as IL-6, TGF-beta, basic FGF, and PDGF. Alterations in levels of these cytokines and proteolytic degradation of small peptide hormones may have profound effect on host-cancer interaction.


Assuntos
Calicreínas/sangue , Osteocalcina/sangue , Proteína Relacionada ao Hormônio Paratireóideo/sangue , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , alfa-Macroglobulinas/metabolismo , Ácidos Borônicos/farmacologia , Estudos de Casos e Controles , Feminino , Humanos , Calicreínas/antagonistas & inibidores , Masculino , Peptidomiméticos/farmacologia , Antígeno Prostático Específico/antagonistas & inibidores , Neoplasias da Próstata/patologia , alfa-Macroglobulinas/antagonistas & inibidores
3.
Prostate ; 78(16): 1262-1282, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30073676

RESUMO

BACKGROUND: While it has been challenging to establish prostate cancer patient-derived xenografts (PDXs), with a take rate of 10-40% and long latency time, multiple groups throughout the world have developed methods for the successful establishment of serially transplantable human prostate cancer PDXs using a variety of immune deficient mice. In 2014, the Movember Foundation launched a Global Action Plan 1 (GAP1) project to support an international collaborative prostate cancer PDX program involving eleven groups. Between these Movember consortium members, a total of 98 authenticated human prostate cancer PDXs were available for characterization. Eighty three of these were derived directly from patient material, and 15 were derived as variants of patient-derived material via serial passage in androgen deprived hosts. A major goal of the Movember GAP1 PDX project was to provide the prostate cancer research community with a summary of both the basic characteristics of the 98 available authenticated serially transplantable human prostate cancer PDX models and the appropriate contact information for collaborations. Herein, we report a summary of these PDX models. METHODS: PDX models were established in immunocompromised mice via subcutaneous or subrenal-capsule implantation. Dual-label species (ie, human vs mouse) specific centromere and telomere Fluorescence In Situ Hybridization (FISH) and immuno-histochemical (IHC) staining of tissue microarrays (TMAs) containing replicates of the PDX models were used for characterization of expression of a number of phenotypic markers important for prostate cancer including AR (assessed by IHC and FISH), Ki67, vimentin, RB1, P-Akt, chromogranin A (CgA), p53, ERG, PTEN, PSMA, and epithelial cytokeratins. RESULTS: Within this series of PDX models, the full spectrum of clinical disease stages is represented, including androgen-sensitive and castration-resistant primary and metastatic prostate adenocarcinomas as well as prostate carcinomas with neuroendocrine differentiation. The annotated clinical characteristics of these PDXs were correlated with their marker expression profile. CONCLUSION: Our results demonstrate the clinical relevance of this series of PDXs as a platform for both basic science studies and therapeutic discovery/drug development. The present report provides the prostate cancer community with a summary of the basic characteristics and a contact information for collaborations using these models.


Assuntos
Xenoenxertos , Transplante de Neoplasias/métodos , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA