Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA ; 24(6): 778-786, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29563249

RESUMO

Transcriptome analysis of human cells has revealed that intron retention controls the expression of a large number of genes with diverse cellular functions. Detained introns (DI) constitute a subgroup of transcripts with retained introns that are not exported to the cytoplasm but instead remain in the nucleus. Previous studies reported that the splicing of DIs in the CLK1 transcript is post-transcriptionally induced to produce mature mRNA in the absence of new transcription. Thus, CLK1-DI serves as a precursor or "reservoir" for the CLK1 mRNA. However, whether this is a universal mechanism for gene regulation by intron detention remains unknown. The MAT2A gene encodes S-adenosylmethionine (SAM) synthetase and it contains a DI that is regulated in response to intracellular SAM levels. We used three independent assays to assess the precursor-product relationship between MAT2A-DI and MAT2A mRNA. In contrast to CLK1-DI, these data support a model in which the MAT2A-DI transcript is not a precursor to mRNA but is instead a "dead-end" RNA fated for nuclear decay. Additionally, we show that in SAM-deprived conditions the cotranscriptional splicing of MAT2A detained introns increases. We conclude that polyadenylated RNAs with DIs can have at least two distinct fates. They can serve as nuclear reservoirs of pre-mRNAs available for rapid induction by the cell, or they constitute dead-end RNAs that are degraded in the nucleus.


Assuntos
Íntrons , Metionina Adenosiltransferase/genética , Precursores de RNA/genética , Splicing de RNA , RNA Mensageiro/genética , Transcrição Gênica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , S-Adenosilmetionina/metabolismo
2.
PLoS Genet ; 11(10): e1005610, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26484760

RESUMO

The human nuclear poly(A)-binding protein PABPN1 has been implicated in the decay of nuclear noncoding RNAs (ncRNAs). In addition, PABPN1 promotes hyperadenylation by stimulating poly(A)-polymerases (PAPα/γ), but this activity has not previously been linked to the decay of endogenous transcripts. Moreover, the mechanisms underlying target specificity have remained elusive. Here, we inactivated PAP-dependent hyperadenylation in cells by two independent mechanisms and used an RNA-seq approach to identify endogenous targets. We observed the upregulation of various ncRNAs, including snoRNA host genes, primary miRNA transcripts, and promoter upstream antisense RNAs, confirming that hyperadenylation is broadly required for the degradation of PABPN1-targets. In addition, we found that mRNAs with retained introns are susceptible to PABPN1 and PAPα/γ-mediated decay (PPD). Transcripts are targeted for degradation due to inefficient export, which is a consequence of reduced intron number or incomplete splicing. Additional investigation showed that a genetically-encoded poly(A) tail is sufficient to drive decay, suggesting that degradation occurs independently of the canonical cleavage and polyadenylation reaction. Surprisingly, treatment with transcription inhibitors uncouples polyadenylation from decay, leading to runaway hyperadenylation of nuclear decay targets. We conclude that PPD is an important mammalian nuclear RNA decay pathway for the removal of poorly spliced and nuclear-retained transcripts.


Assuntos
Núcleo Celular/genética , Poli A/genética , Proteína I de Ligação a Poli(A)/genética , Estabilidade de RNA/genética , Núcleo Celular/metabolismo , Humanos , Íntrons/genética , Poliadenilação/genética , Splicing de RNA/genética , RNA Antissenso/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Nucleolar Pequeno/genética
3.
Nature ; 469(7328): 107-11, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21170023

RESUMO

The fidelity and specificity of information flow within a cell is controlled by scaffolding proteins that assemble and link enzymes into signalling circuits. These circuits can be inhibited by bacterial effector proteins that post-translationally modify individual pathway components. However, there is emerging evidence that pathogens directly organize higher-order signalling networks through enzyme scaffolding, and the identity of the effectors and their mechanisms of action are poorly understood. Here we identify the enterohaemorrhagic Escherichia coli O157:H7 type III effector EspG as a regulator of endomembrane trafficking using a functional screen, and report ADP-ribosylation factor (ARF) GTPases and p21-activated kinases (PAKs) as its relevant host substrates. The 2.5 Å crystal structure of EspG in complex with ARF6 shows how EspG blocks GTPase-activating-protein-assisted GTP hydrolysis, revealing a potent mechanism of GTPase signalling inhibition at organelle membranes. In addition, the 2.8 Å crystal structure of EspG in complex with the autoinhibitory Iα3-helix of PAK2 defines a previously unknown catalytic site in EspG and provides an allosteric mechanism of kinase activation by a bacterial effector. Unexpectedly, ARF and PAKs are organized on adjacent surfaces of EspG, indicating its role as a 'catalytic scaffold' that effectively reprograms cellular events through the functional assembly of GTPase-kinase signalling complex.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Biocatálise , Escherichia coli O157/química , Proteínas de Escherichia coli/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Fatores de Ribosilação do ADP/química , Regulação Alostérica , Animais , Transporte Biológico , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Complexo de Golgi/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Membranas Intracelulares/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Desdobramento de Proteína , Ratos , Técnicas do Sistema de Duplo-Híbrido , Quinases Ativadas por p21/química
4.
PLoS Genet ; 9(10): e1003893, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146636

RESUMO

Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression.


Assuntos
Proteína I de Ligação a Poli(A)/genética , Poliadenilação/genética , Estabilidade de RNA/genética , RNA Mensageiro/biossíntese , Proteínas de Transporte/genética , Núcleo Celular/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/metabolismo , Humanos , Proteína I de Ligação a Poli(A)/metabolismo , RNA Mensageiro/genética
5.
Elife ; 62017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653618

RESUMO

The rate of protein synthesis in the adult heart is one of the lowest in mammalian tissues, but it increases substantially in response to stress and hypertrophic stimuli through largely obscure mechanisms. Here, we demonstrate that regulated expression of cytosolic poly(A)-binding protein 1 (PABPC1) modulates protein synthetic capacity of the mammalian heart. We uncover a poly(A) tail-based regulatory mechanism that dynamically controls PABPC1 protein synthesis in cardiomyocytes and thereby titrates cellular translation in response to developmental and hypertrophic cues. Our findings identify PABPC1 as a direct regulator of cardiac hypertrophy and define a new paradigm of gene regulation in the heart, where controlled changes in poly(A) tail length influence mRNA translation.


Assuntos
Regulação da Expressão Gênica , Miocárdio/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Animais , Humanos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA