Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gut ; 65(3): 415-425, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26045134

RESUMO

BACKGROUND: Crohn's disease (CD)-associated dysbiosis is characterised by a loss of Faecalibacterium prausnitzii, whose culture supernatant exerts an anti-inflammatory effect both in vitro and in vivo. However, the chemical nature of the anti-inflammatory compounds has not yet been determined. METHODS: Peptidomic analysis using mass spectrometry was applied to F. prausnitzii supernatant. Anti-inflammatory effects of identified peptides were tested in vitro directly on intestinal epithelial cell lines and on cell lines transfected with a plasmid construction coding for the candidate protein encompassing these peptides. In vivo, the cDNA of the candidate protein was delivered to the gut by recombinant lactic acid bacteria to prevent dinitrobenzene sulfonic acid (DNBS)-colitis in mice. RESULTS: The seven peptides, identified in the F. prausnitzii culture supernatants, derived from a single microbial anti-inflammatory molecule (MAM), a protein of 15 kDa, and comprising 53% of non-polar residues. This last feature prevented the direct characterisation of the putative anti-inflammatory activity of MAM-derived peptides. Transfection of MAM cDNA in epithelial cells led to a significant decrease in the activation of the nuclear factor (NF)-κB pathway with a dose-dependent effect. Finally, the use of a food-grade bacterium, Lactococcus lactis, delivering a plasmid encoding MAM was able to alleviate DNBS-induced colitis in mice. CONCLUSIONS: A 15 kDa protein with anti-inflammatory properties is produced by F. prausnitzii, a commensal bacterium involved in CD pathogenesis. This protein is able to inhibit the NF-κB pathway in intestinal epithelial cells and to prevent colitis in an animal model.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridiales/metabolismo , Doença de Crohn/microbiologia , Disbiose/microbiologia , Mucosa Intestinal/microbiologia , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/uso terapêutico , Biomarcadores/metabolismo , Linhagem Celular , Colite/induzido quimicamente , Colite/metabolismo , Colite/prevenção & controle , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Disbiose/metabolismo , Disbiose/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , NF-kappa B/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Biocell ; 32(2): 175-83, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18825911

RESUMO

4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) is a DNA dye widely used to mark and trace stem cells in therapy. We here studied the effect of DAPI staining on the behavior of mesenchymal stem cells cultured in either a control, non-osteogenic medium or in an osteogenic differentiation medium. In the control medium, the number of stem cells/field, as well as the number of fluorescent cells/field increased up to the sixth day in both control and DAPI-treated cultures. Afterwards, both the number of fluorescent cells and their fluorescence intensity decreased. Control cells were fusiform and with some long extensions that apparently linked them to neighboring cells, while DAPI-treated cells were mostly round cells with fine and short extensions. The trypan-blue exclusion method showed 99% cell viability in both groups, however, both alkaline phosphatase activity and the thiazolyl blue formazan assay (indicative of mitochondrial metabolism) gave significantly lower values in DAPI-marked cells. The mitochondrial mass, as indicated by specific staining and flow cytometry, showed no differences between groups. Mesenchymal stem cells gave origin to mineralized nodules in the osteogenic differentiation medium and there were not DAPI-marked cells on the ninth day of culture. Alkaline phosphatase activity, viability assay and number of cells/field and of mineralized nodules/field were similar in both groups. So, DAPI treatment did not change cell viability and proliferation during osteogenic differentiation of mesenchymal stem cells. However, since these cells loose DAPI marking after 9 days in osteogenic cultures suggests that DAPI may not be an effective marker for mesenchymal stem cells implanted in bone tissue for long periods.


Assuntos
Células da Medula Óssea/fisiologia , Corantes Fluorescentes/metabolismo , Indóis/metabolismo , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Forma Celular , Células Cultivadas , Meios de Cultura/química , Masculino , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Ratos
3.
Biocell ; 32(2): 175-183, Aug. 2008. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-541112

RESUMO

4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) is a DNA dye widely used to mark and trace stem cells in therapy. We here studied the effect of DAPI staining on the behavior of mesenchymal stem cells cultured in either a control, non-osteogenic medium or in an osteogenic differentiation medium. In the control medium, the number of stem cells/field, as well as the number of fluorescent cells/field increased up to the sixth day in both control and DAPI-treated cultures. Afterwards, both the number of fluorescent cells and their fluorescence intensity decreased. Control cells were fusiform and with some long extensions that apparently linked them to neighboring cells, while DAPI-treated cells were mostly round cells with fine and short extensions. The trypan-blue exclusion method showed 99% cell viability in both groups, however, both alkaline phosphatase activity and the thiazolyl blue formazan assay (indicative of mitochondrial metabolism) gave significantly lower values in DAPI-marked cells The mitochondrial mass, as indicated by specific staining and flow cytometry, showed no differences between groups. Mesenchymal stem cells gave origin to mineralized nodules in the osteogenic differentiation medium and there were not DAPI-marked cells on the ninth day of culture. Alkaline phosphatase activity, viability assay and number of cells/field and of mineralized nodules/field were similar in both groups. So, DAPI treatment did not change cell viability and proliferation during osteogenic differentiation of mesenchymal stem cells. However, since these cells loose DAPI marking after 9 days in osteogenic cultures suggests that DAPI may not be an effective marker for mesenchymal stem cells implanted in bone tissue for long periods.


Assuntos
Masculino , Animais , Ratos , Diferenciação Celular , Células Cultivadas , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Corantes Fluorescentes/metabolismo , Células-Tronco Mesenquimais , Indóis/metabolismo , Meios de Cultura/química , Mitocôndrias/metabolismo , Osteogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA