Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
N Engl J Med ; 380(2): 142-151, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30586318

RESUMO

BACKGROUND: Exome sequencing is emerging as a first-line diagnostic method in some clinical disciplines, but its usefulness has yet to be examined for most constitutional disorders in adults, including chronic kidney disease, which affects more than 1 in 10 persons globally. METHODS: We conducted exome sequencing and diagnostic analysis in two cohorts totaling 3315 patients with chronic kidney disease. We assessed the diagnostic yield and, among the patients for whom detailed clinical data were available, the clinical implications of diagnostic and other medically relevant findings. RESULTS: In all, 3037 patients (91.6%) were over 21 years of age, and 1179 (35.6%) were of self-identified non-European ancestry. We detected diagnostic variants in 307 of the 3315 patients (9.3%), encompassing 66 different monogenic disorders. Of the disorders detected, 39 (59%) were found in only a single patient. Diagnostic variants were detected across all clinically defined categories, including congenital or cystic renal disease (127 of 531 patients [23.9%]) and nephropathy of unknown origin (48 of 281 patients [17.1%]). Of the 2187 patients assessed, 34 (1.6%) had genetic findings for medically actionable disorders that, although unrelated to their nephropathy, would also lead to subspecialty referral and inform renal management. CONCLUSIONS: Exome sequencing in a combined cohort of more than 3000 patients with chronic kidney disease yielded a genetic diagnosis in just under 10% of cases. (Funded by the National Institutes of Health and others.).


Assuntos
Exoma , Predisposição Genética para Doença , Mutação , Insuficiência Renal Crônica/genética , Análise de Sequência de DNA/métodos , Adulto , Idoso , Estudos de Coortes , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/etnologia , Adulto Jovem
2.
PLoS Genet ; 13(11): e1007104, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29186148

RESUMO

Trio exome sequencing has been successful in identifying genes with de novo mutations (DNMs) causing epileptic encephalopathy (EE) and other neurodevelopmental disorders. Here, we evaluate how well a case-control collapsing analysis recovers genes causing dominant forms of EE originally implicated by DNM analysis. We performed a genome-wide search for an enrichment of "qualifying variants" in protein-coding genes in 488 unrelated cases compared to 12,151 unrelated controls. These "qualifying variants" were selected to be extremely rare variants predicted to functionally impact the protein to enrich for likely pathogenic variants. Despite modest sample size, three known EE genes (KCNT1, SCN2A, and STXBP1) achieved genome-wide significance (p<2.68×10-6). In addition, six of the 10 most significantly associated genes are known EE genes, and the majority of the known EE genes (17 out of 25) originally implicated in trio sequencing are nominally significant (p<0.05), a proportion significantly higher than the expected (Fisher's exact p = 2.33×10-17). Our results indicate that a case-control collapsing analysis can identify several of the EE genes originally implicated in trio sequencing studies, and clearly show that additional genes would be implicated with larger sample sizes. The case-control analysis not only makes discovery easier and more economical in early onset disorders, particularly when large cohorts are available, but also supports the use of this approach to identify genes in diseases that present later in life when parents are not readily available.


Assuntos
Epilepsia/genética , Mutação , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Genes Dominantes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas Munc18/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Canais de Potássio Ativados por Sódio , Sequenciamento do Exoma
3.
Am J Respir Crit Care Med ; 196(1): 82-93, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28099038

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is an increasingly recognized, often fatal lung disease of unknown etiology. OBJECTIVES: The aim of this study was to use whole-exome sequencing to improve understanding of the genetic architecture of pulmonary fibrosis. METHODS: We performed a case-control exome-wide collapsing analysis including 262 unrelated individuals with pulmonary fibrosis clinically classified as IPF according to American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association guidelines (81.3%), usual interstitial pneumonia secondary to autoimmune conditions (11.5%), or fibrosing nonspecific interstitial pneumonia (7.2%). The majority (87%) of case subjects reported no family history of pulmonary fibrosis. MEASUREMENTS AND MAIN RESULTS: We searched 18,668 protein-coding genes for an excess of rare deleterious genetic variation using whole-exome sequence data from 262 case subjects with pulmonary fibrosis and 4,141 control subjects drawn from among a set of individuals of European ancestry. Comparing genetic variation across 18,668 protein-coding genes, we found a study-wide significant (P < 4.5 × 10-7) case enrichment of qualifying variants in TERT, RTEL1, and PARN. A model qualifying ultrarare, deleterious, nonsynonymous variants implicated TERT and RTEL1, and a model specifically qualifying loss-of-function variants implicated RTEL1 and PARN. A subanalysis of 186 case subjects with sporadic IPF confirmed TERT, RTEL1, and PARN as study-wide significant contributors to sporadic IPF. Collectively, 11.3% of case subjects with sporadic IPF carried a qualifying variant in one of these three genes compared with the 0.3% carrier rate observed among control subjects (odds ratio, 47.7; 95% confidence interval, 21.5-111.6; P = 5.5 × 10-22). CONCLUSIONS: We identified TERT, RTEL1, and PARN-three telomere-related genes previously implicated in familial pulmonary fibrosis-as significant contributors to sporadic IPF. These results support the idea that telomere dysfunction is involved in IPF pathogenesis.


Assuntos
Exoma/genética , Predisposição Genética para Doença/genética , Fibrose Pulmonar Idiopática/genética , Feminino , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Mol Diagn ; 26(2): 96-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086510

RESUMO

Quality assurance (QA) is essential for precision oncology workflows, in particular in the clinical setting. However, because of numerous variations in laboratory and bioinformatics pipelines, QA practices remain non-standardized, are often ad hoc, and are lacking longitudinal tracking. A selected review of existing software was performed for quality control of Illumina next-generation sequencing data, focusing specifically on generalizable tools that can be integrated into any bioinformatics workflow to easily develop a QA workflow with longitudinal tracking. Although all implementations need to be integrated, validated, and iterated upon to suit individual operations, providing a base suite of options will enable better validation and use of QA in clinical somatic mutation testing for workflows using Illumina next-generation sequencing and beyond.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional , Software , Fluxo de Trabalho
5.
J Mol Diagn ; 24(6): 609-618, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367630

RESUMO

Tumor mutation burden (TMB) is a measure to predict patient responsiveness to immune checkpoint immunotherapy because with increased mutation frequency, the likelihood of a greater neoantigen burden is increased. Although neoantigen prediction tools exist, tumor neoantigen burden has not been adopted as a measure to predict immunotherapy response. With both measures, current guidelines are limited to the coding regions, but ectopic expression of sequences in the noncoding space may potentially be a source of neoantigens. A pan-cancer cohort of 574 advanced disease stage patients with whole genome and transcriptome sequencing was analyzed to report mutation burden and neoantigen counts within the coding and noncoding regions. The efficacy of tumor neoantigen burden, reported as tumor neoantigen count (TNC), including neoantigens derived from the expression of noncoding regions, compared with TMB as a predictor of response to immunotherapy for 80 patients who had received treatment, was evaluated. TMB was found to be the best predictor of response to immunotherapy, whereas expression-derived TNC from the noncoding regions did not improve prediction of response. Therefore, there is minimal benefit in extending the calculation of TNC to the noncoding space for the purposes of predicting response. However, it is likely that there is a wealth of neoantigens derived from the noncoding space that may impact patient outcomes and treatments.


Assuntos
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Biomarcadores Tumorais , Humanos , Imunoterapia , Mutação , Neoplasias/genética , Neoplasias/terapia , Sequenciamento do Exoma
6.
mBio ; 6(1)2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25670772

RESUMO

UNLABELLED: Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. IMPORTANCE: Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals-including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with acute sarcocystosis. Among Sarcocystis species, S. neurona has a wide host range and causes fatal encephalitis in horses, marine mammals, and several other mammals. To provide insights into the transition from a purely enteric parasite (e.g., Eimeria) to one that forms tissue cysts (Toxoplasma), we present the first genome sequence of S. neurona. Comparisons with other coccidian genomes highlight the molecular innovations that drive its distinct life cycle strategies.


Assuntos
Genoma de Protozoário , Sarcocystis/crescimento & desenvolvimento , Sarcocystis/genética , Sarcocistose/parasitologia , Sarcocistose/veterinária , Animais , Humanos , Estágios do Ciclo de Vida , Filogenia , Proteínas de Protozoários/genética , Sarcocystis/classificação , Sarcocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA