Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Res ; 82(5): 916-928, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965932

RESUMO

Squamous cell carcinoma driven by human papillomavirus (HPV) is more sensitive to DNA-damaging therapies than its HPV-negative counterpart. Here, we show that p16, the clinically used surrogate for HPV positivity, renders cells more sensitive to radiotherapy via a ubiquitin-dependent signaling pathway, linking high levels of this protein to increased activity of the transcription factor SP1, increased HUWE1 transcription, and degradation of ubiquitin-specific protease 7 (USP7) and TRIP12. Activation of this pathway in HPV-positive disease led to decreased homologous recombination and improved response to radiotherapy, a phenomenon that can be recapitulated in HPV-negative disease using USP7 inhibitors in clinical development. This p16-driven axis induced sensitivity to PARP inhibition and potentially leads to "BRCAness" in head and neck squamous cell carcinoma (HNSCC) cells. Thus, these findings support a functional role for p16 in HPV-positive tumors in driving response to DNA damage, which can be exploited to improve outcomes in both patients with HPV-positive and HPV-negative HNSCC. SIGNIFICANCE: In HPV-positive tumors, a previously undiscovered pathway directly links p16 to DNA damage repair and sensitivity to radiotherapy via a clinically relevant and pharmacologically targetable ubiquitin-mediated degradation pathway.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Carcinoma de Células Escamosas/patologia , Proteínas de Transporte , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA , DNA Viral/genética , Neoplasias de Cabeça e Pescoço/genética , Humanos , Papillomaviridae/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo
2.
Int J Radiat Biol ; 97(8): 1121-1128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32073931

RESUMO

PURPOSE: Head and neck cancers (HNSCC) are routinely treated with radiotherapy; however, normal tissue toxicity remains a concern. Therefore, it is important to validate treatment modalities combining molecularly targeted agents with radiotherapy to improve the therapeutic ratio. The aim of this study was to assess the ability of the PARP inhibitor niraparib (MK-4827) alone, or in combination with cell cycle checkpoint abrogating drugs targeting Chk1 (MK-8776) or Wee1 (MK-1775), to radiosensitize HNSCCs in the context of HPV status. MATERIALS AND METHODS: PARP1, PARP2, Chk1 or Wee1 shRNA constructs were analyzed from an in vivo shRNA screen of HNSCC xenografts comparing radiosensitization differences between HPV(+) and HPV(-) tumors. Radiosensitization by niraparib alone or in combination with MK-8776 or MK-1775 was assessed by clonogenic survival in HPV(-) and HPV(+) cells; and the role of p16 in determining response was explored. Relative expressions of DNA repair genes were compared by PCR array in HPV(+) and HPV(-) cells, and following siRNA-mediated knockdown of TRIP12 in HPV(-) cells. RESULTS: In vivo shRNA screening showed a modest preferential radiosensitization by Wee1 and PARP2 in HPV(-) and Chk1 in HPV(+) tumor models. Niraparib alone enhanced the radiosensitivity of all HNSCC cell lines tested. However, HPV(-) cells were sensitized to a greater degree, as suggested by the shRNA screen. When combined with MK-8776 or MK-1775, radiosensitization was further enhanced in an HPV dependent manner with HPV(+) cells enhanced by MK-8776 and HPV(-) cells enhanced by MK-1775. A PCR array for DNA repair genes showed PARP and HR proteins BRCA1 and RAD51 were much lower in HPV(+) cells than in HPV(-). Similarly, directly knocking down p16-dependent TRIP12 decreased expression of these same genes. Overexpressing p16 decreased TRIP12 expression and increased radiosensitivity in HPV(-) HN5. However, while PARP inhibition led to significant radiosensitization in the control, it led to no further significant radiosensitization in p16 overexpressing cells. Forced p16 expression in HPV(-) HN5 increased accumulation in G1 and subG1 and limited progression to S phase, thus reducing effectiveness of PARP inhibition. CONCLUSIONS: Niraparib effectively radiosensitizes HNSCCs with a greater benefit seen in HPV(-). HPV status also plays a role in response to MK-8776 or MK-1775 when combined with niraparib due to differences in DNA repair mechanisms. This study suggests that using cell cycle abrogators in combination with PARP inhibitors may be a beneficial treatment option in HNSCC, but also emphasizes the importance of HPV status when considering effective treatment strategies.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Humanos , Indazóis/farmacologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Tolerância a Radiação/efeitos dos fármacos
3.
Oncotarget ; 7(44): 71660-71672, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690219

RESUMO

Radiotherapy is commonly used to treat a variety of solid tumors but improvements in the therapeutic ratio are sorely needed. The aim of this study was to assess the Chk1 kinase inhibitor, MK-8776, for its ability to radiosensitize human tumor cells. Cells derived from NSCLC and HNSCC cancers were tested for radiosensitization by MK-8776. The ability of MK-8776 to abrogate the radiation-induced G2 block was determined using flow cytometry. Effects on repair of radiation-induced DNA double strand breaks (DSBs) were determined on the basis of rad51, γ-H2AX and 53BP1 foci. Clonogenic survival analyses indicated that MK-8776 radiosensitized p53-defective tumor cells but not lines with wild-type p53. Abrogation of the G2 block was evident in both p53-defective cells and p53 wild-type lines indicating no correlation with radiosensitization. However, only p53-defective cells entered mitosis harboring unrepaired DSBs. MK-8776 appeared to inhibit repair of radiation-induced DSBs at early times after irradiation. A comparison of MK-8776 to the wee1 inhibitor, MK-1775, suggested both similarities and differences in their activities. In conclusion, MK-8776 radiosensitizes tumor cells by mechanisms that include abrogation of the G2 block and inhibition of DSB repair. Our findings support the clinical evaluation of MK-8776 in combination with radiation.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Radiossensibilizantes/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Fase G2/efeitos da radiação , Histonas/análise , Humanos , Pirimidinonas , Proteína Supressora de Tumor p53/genética
4.
Oncotarget ; 5(13): 5076-86, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24970803

RESUMO

The aim of this study was to assess niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase (PARP) inhibitor, for its ability to radiosensitize human tumor cells. Human tumor cells derived from lung, breast and prostate cancers were tested for radiosensitization by niraparib using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of niraparib to alter the repair of radiation-induced DNA double strand breaks (DSBs) was determined using detection of γ-H2AX foci and RAD51 foci. Clonogenic survival analyses indicated that micromolar concentrations of niraparib radiosensitized tumor cell lines derived from lung, breast, and prostate cancers independently of their p53 status but not cell lines derived from normal tissues. Niraparib also sensitized tumor cells to H2O2 and converted H2O2-induced single strand breaks (SSBs) into DSBs during DNA replication. These results indicate that human tumor cells are significantly radiosensitized by the potent and selective PARP-1 inhibitor, niraparib, in the in vitro setting. The mechanism of this effect appears to involve a conversion of sublethal SSBs into lethal DSBs during DNA replication due to the inhibition of base excision repair by the drug. Taken together, our findings strongly support the clinical evaluation of niraparib in combination with radiation.


Assuntos
Indazóis/farmacologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Radiossensibilizantes/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Feminino , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Microscopia de Fluorescência , Oxidantes/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Rad51 Recombinase/metabolismo , Ensaio Tumoral de Célula-Tronco , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Clin Cancer Res ; 17(17): 5638-48, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21799033

RESUMO

PURPOSE: Radiotherapy is commonly used to treat a variety of solid tumors. However, improvements in the therapeutic ratio for several disease sites are sorely needed, leading us to assess molecularly targeted therapeutics as radiosensitizers. The aim of this study was to assess the wee1 kinase inhibitor, MK-1775, for its ability to radiosensitize human tumor cells. EXPERIMENTAL DESIGN: Human tumor cells derived from lung, breast, and prostate cancers were tested for radiosensitization by MK-1775 using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of MK-1775 to abrogate the radiation-induced G2 block, thereby allowing cells harboring DNA lesions to prematurely progress into mitosis, was determined using flow cytometry and detection of γ-H2AX foci. The in vivo efficacy of the combination of MK-1775 and radiation was assessed by tumor growth delay experiments using a human lung cancer cell line growing as a xenograft tumor in nude mice. RESULTS: Clonogenic survival analyses indicated that nanomolar concentrations of MK-1775 radiosensitized p53-defective human lung, breast, and prostate cancer cells but not similar lines with wild-type p53. Consistent with its ability to radiosensitize, MK-1775 abrogated the radiation-induced G2 block in p53-defective cells but not in p53 wild-type lines. MK-1775 also significantly enhanced the antitumor efficacy of radiation in vivo as shown in tumor growth delay studies, again for p53-defective tumors. CONCLUSIONS: These results indicate that p53-defective human tumor cells are significantly radiosensitized by the potent and selective wee1 kinase inhibitor, MK-1775, in both the in vitro and in vivo settings. Taken together, our findings strongly support the clinical evaluation of MK-1775 in combination with radiation.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias , Proteínas Nucleares/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Radiossensibilizantes/farmacologia , Proteína Supressora de Tumor p53/deficiência , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Masculino , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/radioterapia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinonas , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Chemother Pharmacol ; 65(1): 41-54, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19404643

RESUMO

PURPOSE: This study assessed the role of oxidative stress and loss of glutathione in ABT-737-induced apoptosis. METHODS: Jurkat human acute lymphocytic leukemia cells and HeLa cells transfected with a tet-regulated Bcl-2 expression system were treated with ABT-737 or its less active stereoisomer. GSH concentrations, intracellular reactive oxygen species (ROS), caspase activation and apoptotic DNA fragmentation were measured. RESULTS: ABT-737 induced oxidative stress through decreased GSH and increased intracellular hydrogen peroxide and superoxide levels. Apoptotic DNA fragmentation and caspase activation were the consequences of this oxidative stress. Combining ABT-737 with ROS-inducing agents such as adaphostin or etoposide enhanced cell death. CONCLUSIONS: These results demonstrate that inhibition of Bcl-2 causes a loss of GSH, an increase in ROS, caspase activation and subsequent apoptosis. Clinically, redox alterations as a consequence of Bcl-2 inhibition by ABT-737 should be considered in devising combination therapies with this novel agent or its derivatives.


Assuntos
Compostos de Bifenilo/farmacologia , Glutationa/efeitos dos fármacos , Nitrofenóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/química , Caspases/efeitos dos fármacos , Caspases/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Glutationa/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Células Jurkat , Nitrofenóis/química , Oxirredução , Piperazinas/química , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Estereoisomerismo , Sulfonamidas/química , Superóxidos/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA