Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 563(7729): 100-104, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30356210

RESUMO

The Suzuki-Miyaura cross-coupling of organoboron nucleophiles with aryl halide electrophiles is one of the most widely used carbon-carbon bond-forming reactions in organic and medicinal chemistry1,2. A key challenge associated with these transformations is that they generally require the addition of an exogenous base, the role of which is to enable transmetallation between the organoboron nucleophile and the metal catalyst3. This requirement limits the substrate scope of the reaction because the added base promotes competitive decomposition of many organoboron substrates3-5. As such, considerable research has focused on strategies for mitigating base-mediated side reactions6-12. Previous efforts have primarily focused either on designing strategically masked organoboron reagents (to slow base-mediated decomposition)6-8 or on developing highly active palladium precatalysts (to accelerate cross-coupling relative to base-mediated decomposition pathways)10-12. An attractive alternative approach involves identifying combinations of catalyst and electrophile that enable Suzuki-Miyaura-type reactions to proceed without an exogenous base12-14. Here we use this approach to develop a nickel-catalysed coupling of aryl boronic acids with acid fluorides15-17, which are formed in situ from readily available carboxylic acids18-22. This combination of catalyst and electrophile enables a mechanistic manifold in which a 'transmetallation-active' aryl nickel fluoride intermediate is generated directly in the catalytic cycle13,16. As such, this transformation does not require an exogenous base and is applicable to a wide range of base-sensitive boronic acids and biologically active carboxylic acids.


Assuntos
Ácidos Borônicos/química , Ácidos Carboxílicos/química , Fluoretos/química , Níquel/química , Catálise , Indicadores e Reagentes/química
2.
Acc Chem Res ; 55(23): 3430-3444, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382937

RESUMO

Transition-metal-catalyzed cross-coupling reactions are widely used in both academia and industry for the construction of carbon-carbon and carbon-heteroatom bonds. The vast majority of cross-coupling reactions utilize aryl (pseudo)halides as the electrophilic coupling partner. Carboxylic acid derivatives (RC(O)X) represent a complementary class of electrophiles that can engage in decarbonylative couplings to produce analogous products. This decarbonylative approach offers the advantage that RC(O)X are abundant and inexpensive. In addition, decarbonylative coupling enables both intramolecular (between R and X of the carboxylic acid derivative) as well as intermolecular bond-forming reactions (in which an exogeneous nucleophile is coupled with the R group derived from RC(O)X). In these intermolecular reactions, the X-substituent on the carboxylic acid can be tuned to facilitate both oxidative addition and transmetalation, thus eliminating the need for an exogeneous base. This Account details our group's development of a diverse variety of base-free decarbonylative coupling reactions catalyzed by group 10 metals. Furthermore, it highlights how catalyst design can be guided by stoichiometric organometallic studies of these systems.Our early studies focused on intramolecular decarbonylative couplings that transform RC(O)X to the corresponding R-X with extrusion of CO. We first identified Pd and Ni monodentate phosphine catalysts that convert aryl thioesters (ArC(O)SR) to the corresponding thioethers (ArSR). We next expanded this reactivity to fluoroalkyl thioesters, using readily available fluoroalkyl carboxylic acids as the fluoroalkyl (RF) source. A Ni-phosphinoferrocene catalyst proved optimal, and the large bite angle bidentate ligand was necessary to promote the challenging RF-S bond-forming reductive elimination step.We next pursued intramolecular decarbonylative couplings of aroyl halides. Palladium-based catalysts bearing dialkylbiaryl ligands (e.g., BrettPhos) were identified as optimal for converting aroyl chlorides (ArC(O)Cl) to aryl chlorides (ArCl). These ligands were selected based on their ability to facilitate the key C-Cl bond-forming reductive elimination step of the catalytic cycle. In contrast, all attempts to convert aroyl fluorides [ArC(O)F)] to aryl fluorides (ArF) were unsuccessful with either Pd- or Ni-based catalysts. Organometallic studies of the Ni-system show that C(O)-F oxidative addition and CO deinsertion proceed smoothly, but the resulting nickel(II) aryl fluoride intermediate fails to undergo C-F bond-forming reductive elimination.In contrast to its inertness to reductive elimination, this nickel(II) aryl fluoride proved highly reactive toward transmetalation. The fluoride ligand serves as an internal base, such that no additional base is required. We leveraged this "transmetalation active" intermediate to achieve base-free Ni-catalyzed intermolecular decarbonylative coupling reactions between aroyl fluorides and boron reagents to access both biaryl and aryl-boronate ester products. By tuning the electrophile, transmetalating reagent, and catalyst, this same approach also proved applicable to base-free intermolecular decarbonylative fluoroalkylation (between difluoromethylacetyl fluoride and arylboronate esters) and aryl amination (between phenol esters and silyl amines).Moving forward, a key goal is to identify catalyst systems that enable more challenging bond constructions via this manifold. In addition, CO inhibition remains a major issue leading to the requirement for high temperatures and high catalyst loadings. Identifying catalysts that are resistant to CO binding and/or approaches to remove CO under mild conditions will be critical for making these reactions more practical and scalable.


Assuntos
Fluoretos , Níquel , Níquel/química , Fluoretos/química , Ligantes , Catálise , Ácidos Carboxílicos/química , Ésteres , Indicadores e Reagentes , Carbono
3.
J Am Chem Soc ; 143(44): 18617-18625, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709804

RESUMO

This Article describes the development of a decarbonylative Pd-catalyzed aryl-fluoroalkyl bond-forming reaction that couples fluoroalkylcarboxylic acid-derived electrophiles [RFC(O)X] with aryl organometallics (Ar-M'). This reaction was optimized by interrogating the individual steps of the catalytic cycle (oxidative addition, carbonyl de-insertion, transmetalation, and reductive elimination) to identify a compatible pair of coupling partners and an appropriate Pd catalyst. These stoichiometric organometallic studies revealed several critical elements for reaction design. First, uncatalyzed background reactions between RFC(O)X and Ar-M' can be avoided by using M' = boronate ester. Second, carbonyl de-insertion and Ar-RF reductive elimination are the two slowest steps of the catalytic cycle when RF = CF3. Both steps are dramatically accelerated upon changing to RF = CHF2. Computational studies reveal that a favorable F2C-H---X interaction contributes to accelerating carbonyl de-insertion in this system. Finally, transmetalation is slow with X = difluoroacetate but fast with X = F. Ultimately, these studies enabled the development of an (SPhos)Pd-catalyzed decarbonylative difluoromethylation of aryl neopentylglycol boronate esters with difluoroacetyl fluoride.


Assuntos
Compostos Organometálicos/química , Paládio/química , Alquilação , Catálise , Modelos Moleculares , Estrutura Molecular
4.
J Am Chem Soc ; 142(13): 5918-5923, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32207616

RESUMO

The reaction of carboxylic acid derivatives with amines to form amide bonds has been the most widely used transformation in organic synthesis over the past century. Its utility is driven by the broad availability of the starting materials as well as the kinetic and thermodynamic driving force for amide bond formation. As such, the invention of new reactions between carboxylic acid derivatives and amines that strategically deviate from amide bond formation remains both a challenge and an opportunity for synthetic chemists. This report describes the development of a nickel-catalyzed decarbonylative reaction that couples (hetero)aromatic esters with a broad scope of amines to form (hetero)aryl amine products. The successful realization of this transformation was predicated on strategic design of the cross-coupling partners (phenol esters and silyl amines) to preclude conventional reactivity that forms inert amide byproducts.


Assuntos
Ácidos Carboxílicos/química , Ésteres/química , Níquel/química , Aminação , Aminas/química , Catálise , Modelos Moleculares
6.
ACS Catal ; 10(15): 8315-8320, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34306801

RESUMO

This report describes the development of a nickel-catalyzed decarbonylative reaction for the synthesis of fluoroalkyl thioethers (RFSR) from the corresponding thioesters. Readily available, inexpensive, and stable fluoroalkyl carboxylic acids (RFCO2H) serve as the fluoroalkyl (RF) source in this transformation. Stoichiometric organometallic studies reveal that RF-S bond-forming reductive elimination is a challenging step in the catalytic cycle. This led to the identification of diphenylphosphinoferrocene as the optimal ligand for this transformation. Ultimately, this method was applied to the construction of diverse fluoroalkyl thioethers (RFSR), with R = both aryl and alkyl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA