Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Med ; 20(1): e1004143, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634119

RESUMO

BACKGROUND: Sub-Saharan Africa (SSA) has the highest cervical cancer (CC) burden globally-worsened by its HIV epidemics. In 2020, the World Health Organization (WHO) introduced a CC elimination strategy with goals for vaccination, screening, and treatment. To benchmark progress, we examined temporal trends in screening coverage, percent screened at least twice by the age of 45, screening coverage among women living with HIV (WLHIV), and pre-cancer treatment coverage in SSA. METHODS AND FINDINGS: We conducted a systematic analysis of cross-sectional population-based surveys. It included 52 surveys from 28 countries (2000 to 2020) with information on CC screening among women aged 25 to 49 years (N = 151,338 women). We estimated lifetime and past 3-year screening coverage by age, year, country, and HIV serostatus using a Bayesian multilevel model. Post-stratification and imputations were done to obtain aggregate national, regional, and SSA-level estimates. To measure re-screening by age 45, a life table model was developed. Finally, self-reported pre-cancer treatment coverage was pooled across surveys using a Bayesian meta-analysis. Overall, an estimated 14% (95% credible intervals [95% CrI]: 11% to 21%) of women aged 30 to 49 years had ever been screened for CC in 2020, with important regional and country-level differences. In Eastern and Western/Central Africa, regional screening coverages remained constant from 2000 to 2020 and WLHIV had greater odds of being screened compared to women without HIV. In Southern Africa, however, screening coverages increased and WLHIV had equal odds of screening. Notably this region was found to have higher screening coverage in comparison to other African regions. Rescreening rates were high among women who have already been screened; however, it was estimated that only 12% (95% CrI: 10% to 18%) of women had been screened twice or more by age 45 in 2020. Finally, treatment coverage among 4 countries with data was 84% (95% CrI: 70% to 95%). Limitations of our analyses include the paucity of data on screening modality and the few countries that had multiple surveys. CONCLUSION: Overall, CC screening coverage remains sub-optimal and did not improve much over the last 2 decades, outside of Southern Africa. Action is needed to increase screening coverage if CC elimination is to be achieved.


Assuntos
Infecções por HIV , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/prevenção & controle , Detecção Precoce de Câncer/métodos , Estudos Transversais , Teorema de Bayes , África Subsaariana/epidemiologia , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia
2.
BMC Med ; 21(1): 313, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635227

RESUMO

BACKGROUND: To eliminate cervical cancer as a public health problem, the World Health Organization had recommended routine vaccination of adolescent girls with two doses of the human papillomavirus (HPV) vaccine before sexual initiation. However, many countries have yet to implement HPV vaccination because of financial or logistical barriers to delivering two doses outside the infant immunisation programme. METHODS: Using three independent HPV transmission models, we estimated the long-term health benefits and cost-effectiveness of one-dose versus two-dose HPV vaccination, in 188 countries, under scenarios in which one dose of the vaccine gives either a shorter duration of full protection (20 or 30 years) or lifelong protection but lower vaccine efficacy (e.g. 80%) compared to two doses. We simulated routine vaccination with the 9-valent HPV vaccine in 10-year-old girls at 80% coverage for the years 2021-2120, with a 1-year catch-up campaign up to age 14 at 80% coverage in the first year of the programme. RESULTS: Over the years 2021-2120, one-dose vaccination at 80% coverage was projected to avert 115.2 million (range of medians: 85.1-130.4) and 146.8 million (114.1-161.6) cervical cancers assuming one dose of the vaccine confers 20 and 30 years of protection, respectively. Should one dose of the vaccine provide lifelong protection at 80% vaccine efficacy, 147.8 million (140.6-169.7) cervical cancer cases could be prevented. If protection wanes after 20 years, 65 to 889 additional girls would need to be vaccinated with the second dose to prevent one cervical cancer, depending on the epidemiological profiles of the country. Across all income groups, the threshold cost for the second dose was low: from 1.59 (0.14-3.82) USD in low-income countries to 44.83 (3.75-85.64) USD in high-income countries, assuming one dose confers 30-year protection. CONCLUSIONS: Results were consistent across the three independent models and suggest that one-dose vaccination has similar health benefits to a two-dose programme while simplifying vaccine delivery, reducing costs, and alleviating vaccine supply constraints. The second dose may become cost-effective if there is a shorter duration of protection from one dose, cheaper vaccine and vaccination delivery strategies, and high burden of cervical cancer.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Adolescente , Feminino , Lactente , Humanos , Criança , Análise Custo-Benefício , Papillomavirus Humano , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/prevenção & controle , Vacinação
3.
Clin Infect Dis ; 75(1): e805-e813, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34460902

RESUMO

BACKGROUND: In Canada, first and second doses of messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were uniquely spaced 16 weeks apart. We estimated 1- and 2-dose mRNA vaccine effectiveness (VE) among healthcare workers (HCWs) in Québec, Canada, including protection against varying outcome severity, variants of concern (VOCs), and the stability of single-dose protection up to 16 weeks postvaccination. METHODS: A test-negative design compared vaccination among SARS-CoV-2 test-positive and weekly matched (10:1), randomly sampled, test-negative HCWs using linked surveillance and immunization databases. Vaccine status was defined by 1 dose ≥14 days or 2 doses ≥7 days before illness onset or specimen collection. Adjusted VE was estimated by conditional logistic regression. RESULTS: Primary analysis included 5316 cases and 53 160 controls. Single-dose VE was 70% (95% confidence interval [CI], 68%-73%) against SARS-CoV-2 infection; 73% (95% CI, 71%-75%) against illness; and 97% (95% CI, 92%-99%) against hospitalization. Two-dose VE was 86% (95% CI, 81%-90%) and 93% (95% CI, 89%-95%), respectively, with no hospitalizations. VE was higher for non-VOCs than VOCs (73% Alpha) among single-dose recipients but not 2-dose recipients. Across 16 weeks, no decline in single-dose VE was observed, with appropriate stratification based upon prioritized vaccination determined by higher vs lower likelihood of direct patient contact. CONCLUSIONS: One mRNA vaccine dose provided substantial and sustained protection to HCWs extending at least 4 months postvaccination. In circumstances of vaccine shortage, delaying the second dose may be a pertinent public health strategy.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Canadá , Pessoal de Saúde , Humanos , Quebeque/epidemiologia , RNA Mensageiro , Vacinas Sintéticas , Vacinas de mRNA
4.
Clin Infect Dis ; 75(11): 1980-1992, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35438175

RESUMO

BACKGROUND: The Canadian coronavirus disease 2019 (COVID-19) immunization strategy deferred second doses and allowed mixed schedules. We compared 2-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in 2 of Canada's larger provinces. METHODS: Two-dose VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or hospitalization among adults ≥18 years, including due to Alpha, Gamma, and Delta variants of concern (VOCs), was assessed ≥14 days postvaccination by test-negative design studies separately conducted in British Columbia and Quebec, Canada, between 30 May and 27 November (epi-weeks 22-47) 2021. RESULTS: In both provinces, all homologous or heterologous mRNA and/or ChAdOx1 2-dose schedules were associated with ≥90% reduction in SARS-CoV-2 hospitalization risk for ≥7 months. With slight decline from a peak of >90%, VE against infection was ≥80% for ≥6 months following homologous mRNA vaccination, lower by ∼10% when both doses were ChAdOx1 but comparably high following heterologous ChAdOx1 + mRNA receipt. Findings were similar by age group, sex, and VOC. VE was significantly higher with longer 7-8-week versus manufacturer-specified 3-4-week intervals between mRNA doses. CONCLUSIONS: Two doses of any mRNA and/or ChAdOx1 combination gave substantial and sustained protection against SARS-CoV-2 hospitalization, spanning Delta-dominant circulation. ChAdOx1 VE against infection was improved by heterologous mRNA series completion. A 7-8-week interval between first and second doses improved mRNA VE and may be the optimal schedule outside periods of intense epidemic surge. Findings support interchangeability and extended intervals between SARS-CoV-2 vaccine doses, with potential global implications for low-coverage areas and, going forward, for children.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Humanos , Colúmbia Britânica/epidemiologia , Quebeque/epidemiologia , Vacinas contra COVID-19 , Eficácia de Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , RNA Mensageiro
5.
Int J Cancer ; 151(10): 1804-1809, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512109

RESUMO

We aimed to quantify the health impact of immediate introduction of a single-dose human papillomavirus (HPV) vaccination program in a high-burden setting, as waiting until forthcoming trials are completed to implement single-dose HPV vaccination may result in health losses, particularly for cohorts who would age-out of vaccination eligibility. Two mathematical models fitted to a high-burden setting projected cervical cancer incidence rates associated with (a) immediate implementation of one-dose HPV vaccination vs (b) waiting 5 years for evidence from randomized trials to determine if one- or two-doses should be implemented. We conducted analyses assuming a single dose was either noninferior or inferior to two doses. The models projected that immediate implementation of a noninferior single-dose vaccine led to a 7.2% to 9.6% increase in cancers averted between 2021 to 2120, compared to waiting 5 years. Health benefits remained greater with immediate implementation despite an inferior single-dose efficacy (80%), but revaccination of one-dose recipients became more important assuming vaccine waning. Under most circumstances, immediate vaccination avoided health losses for those aging out of vaccine eligibility, leading to greater health benefits than waiting for more information in 5 years.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Incidência , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/prevenção & controle , Vacinação
6.
Lancet ; 397(10272): 398-408, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516338

RESUMO

BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.


Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/virologia , Modelos Teóricos , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Vacinação , Pré-Escolar , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Análise Custo-Benefício , Países em Desenvolvimento , Feminino , Saúde Global , Humanos , Programas de Imunização , Masculino , Vacinação/economia , Vacinação/estatística & dados numéricos
7.
BMC Med ; 20(1): 199, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606803

RESUMO

BACKGROUND: As we are confronted with more transmissible/severe variants with immune escape and the waning of vaccine efficacy, it is particularly relevant to understand how the social contacts of individuals at greater risk of COVID-19 complications evolved over time. We described time trends in social contacts of individuals according to comorbidity and vaccination status before and during the first three waves of the COVID-19 pandemic in Quebec, Canada. METHODS: We used data from CONNECT, a repeated cross-sectional population-based survey of social contacts conducted before (2018/2019) and during the pandemic (April 2020 to July 2021). We recruited non-institutionalized adults from Quebec, Canada, by random digit dialling. We used a self-administered web-based questionnaire to measure the number of social contacts of participants (two-way conversation at a distance ≤2 m or a physical contact, irrespective of masking). We compared the mean number of contacts/day according to the comorbidity status of participants (pre-existing medical conditions with symptoms/medication in the past 12 months) and 1-dose vaccination status during the third wave. All analyses were performed using weighted generalized linear models with a Poisson distribution and robust variance. RESULTS: A total of 1441 and 5185 participants with and without comorbidities, respectively, were included in the analyses. Contacts significantly decreased from a mean of 6.1 (95%CI 4.9-7.3) before the pandemic to 3.2 (95%CI 2.5-3.9) during the first wave among individuals with comorbidities and from 8.1 (95%CI 7.3-9.0) to 2.7 (95%CI 2.2-3.2) among individuals without comorbidities. Individuals with comorbidities maintained fewer contacts than those without comorbidities in the second wave, with a significant difference before the Christmas 2020/2021 holidays (2.9 (95%CI 2.5-3.2) vs 3.9 (95%CI 3.5-4.3); P<0.001). During the third wave, contacts were similar for individuals with (4.1, 95%CI 3.4-4.7) and without comorbidities (4.5, 95%CI 4.1-4.9; P=0.27). This could be partly explained by individuals with comorbidities vaccinated with their first dose who increased their contacts to the level of those without comorbidities. CONCLUSIONS: It will be important to closely monitor COVID-19-related outcomes and social contacts by comorbidity and vaccination status to inform targeted or population-based interventions (e.g., booster doses of the vaccine).


Assuntos
COVID-19 , Busca de Comunicante , Cobertura Vacinal , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Comorbidade , Busca de Comunicante/estatística & dados numéricos , Busca de Comunicante/tendências , Estudos Transversais , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Comportamento Social , Fatores de Tempo , Vacinação/estatística & dados numéricos , Vacinação/tendências , Cobertura Vacinal/estatística & dados numéricos , Cobertura Vacinal/tendências
8.
CMAJ ; 194(6): E195-E204, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165131

RESUMO

BACKGROUND: Understanding inequalities in SARS-CoV-2 transmission associated with the social determinants of health could help the development of effective mitigation strategies that are responsive to local transmission dynamics. This study aims to quantify social determinants of geographic concentration of SARS-CoV-2 cases across 16 census metropolitan areas (hereafter, cities) in 4 Canadian provinces, British Columbia, Manitoba, Ontario and Quebec. METHODS: We used surveillance data on confirmed SARS-CoV-2 cases and census data for social determinants at the level of the dissemination area (DA). We calculated Gini coefficients to determine the overall geographic heterogeneity of confirmed cases of SARS-CoV-2 in each city, and calculated Gini covariance coefficients to determine each city's heterogeneity by each social determinant (income, education, housing density and proportions of visible minorities, recent immigrants and essential workers). We visualized heterogeneity using Lorenz (concentration) curves. RESULTS: We observed geographic concentration of SARS-CoV-2 cases in cities, as half of the cumulative cases were concentrated in DAs containing 21%-35% of their population, with the greatest geographic heterogeneity in Ontario cities (Gini coefficients 0.32-0.47), followed by British Columbia (0.23-0.36), Manitoba (0.32) and Quebec (0.28-0.37). Cases were disproportionately concentrated in areas with lower income and educational attainment, and in areas with a higher proportion of visible minorities, recent immigrants, high-density housing and essential workers. Although a consistent feature across cities was concentration by the proportion of visible minorities, the magnitude of concentration by social determinant varied across cities. INTERPRETATION: Geographic concentration of SARS-CoV-2 cases was observed in all of the included cities, but the pattern by social determinants varied. Geographically prioritized allocation of resources and services should be tailored to the local drivers of inequalities in transmission in response to the resurgence of SARS-CoV-2.


Assuntos
COVID-19/epidemiologia , Demografia/estatística & dados numéricos , Determinantes Sociais da Saúde/estatística & dados numéricos , COVID-19/economia , Canadá/epidemiologia , Cidades/epidemiologia , Estudos Transversais , Demografia/economia , Humanos , SARS-CoV-2 , Determinantes Sociais da Saúde/economia , Fatores Socioeconômicos
9.
BMC Public Health ; 22(1): 1032, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606703

RESUMO

BACKGROUND: Since the beginning of the COVID-19 pandemic, many countries, including Canada, have adopted unprecedented physical distancing measures such as closure of schools and non-essential businesses, and restrictions on gatherings and household visits. We described time trends in social contacts for the pre-pandemic and pandemic periods in Quebec, Canada. METHODS: CONNECT is a population-based study of social contacts conducted shortly before (2018/2019) and during the COVID-19 pandemic (April 2020 - February 2021), using the same methodology for both periods. We recruited participants by random digit dialing and collected data by self-administered web-based questionnaires. Questionnaires documented socio-demographic characteristics and social contacts for two assigned days. A contact was defined as a two-way conversation at a distance ≤ 2 m or as a physical contact, irrespective of masking. We used weighted generalized linear models with a Poisson distribution and robust variance (taking possible overdispersion into account) to compare the mean number of social contacts over time and by socio-demographic characteristics. RESULTS: A total of 1291 and 5516 Quebecers completed the study before and during the pandemic, respectively. Contacts significantly decreased from a mean of 8 contacts/day prior to the pandemic to 3 contacts/day during the spring 2020 lockdown. Contacts remained lower than the pre-COVID period thereafter (lowest = 3 contacts/day during the Christmas 2020/2021 holidays, highest = 5 in September 2020). Contacts at work, during leisure activities/in other locations, and at home with visitors showed the greatest decreases since the beginning of the pandemic. All sociodemographic subgroups showed significant decreases of contacts since the beginning of the pandemic. The mixing matrices illustrated the impact of public health measures (e.g. school closure, gathering restrictions) with fewer contacts between children/teenagers and fewer contacts outside of the three main diagonals of contacts between same-age partners/siblings and between children and their parents. CONCLUSION: Physical distancing measures in Quebec significantly decreased social contacts, which most likely mitigated the spread of COVID-19.


Assuntos
COVID-19 , Distanciamento Físico , Adolescente , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Controle de Doenças Transmissíveis/métodos , Humanos , Pandemias/prevenção & controle , Quebeque/epidemiologia , Instituições Acadêmicas
10.
Lancet ; 395(10224): 575-590, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32007141

RESUMO

BACKGROUND: The WHO Director-General has issued a call for action to eliminate cervical cancer as a public health problem. To help inform global efforts, we modelled potential human papillomavirus (HPV) vaccination and cervical screening scenarios in low-income and lower-middle-income countries (LMICs) to examine the feasibility and timing of elimination at different thresholds, and to estimate the number of cervical cancer cases averted on the path to elimination. METHODS: The WHO Cervical Cancer Elimination Modelling Consortium (CCEMC), which consists of three independent transmission-dynamic models identified by WHO according to predefined criteria, projected reductions in cervical cancer incidence over time in 78 LMICs for three standardised base-case scenarios: girls-only vaccination; girls-only vaccination and once-lifetime screening; and girls-only vaccination and twice-lifetime screening. Girls were vaccinated at age 9 years (with a catch-up to age 14 years), assuming 90% coverage and 100% lifetime protection against HPV types 16, 18, 31, 33, 45, 52, and 58. Cervical screening involved HPV testing once or twice per lifetime at ages 35 years and 45 years, with uptake increasing from 45% (2023) to 90% (2045 onwards). The elimination thresholds examined were an average age-standardised cervical cancer incidence of four or fewer cases per 100 000 women-years and ten or fewer cases per 100 000 women-years, and an 85% or greater reduction in incidence. Sensitivity analyses were done, varying vaccination and screening strategies and assumptions. We summarised results using the median (range) of model predictions. FINDINGS: Girls-only HPV vaccination was predicted to reduce the median age-standardised cervical cancer incidence in LMICs from 19·8 (range 19·4-19·8) to 2·1 (2·0-2·6) cases per 100 000 women-years over the next century (89·4% [86·2-90·1] reduction), and to avert 61·0 million (60·5-63·0) cases during this period. Adding twice-lifetime screening reduced the incidence to 0·7 (0·6-1·6) cases per 100 000 women-years (96·7% [91·3-96·7] reduction) and averted an extra 12·1 million (9·5-13·7) cases. Girls-only vaccination was predicted to result in elimination in 60% (58-65) of LMICs based on the threshold of four or fewer cases per 100 000 women-years, in 99% (89-100) of LMICs based on the threshold of ten or fewer cases per 100 000 women-years, and in 87% (37-99) of LMICs based on the 85% or greater reduction threshold. When adding twice-lifetime screening, 100% (71-100) of LMICs reached elimination for all three thresholds. In regions in which all countries can achieve cervical cancer elimination with girls-only vaccination, elimination could occur between 2059 and 2102, depending on the threshold and region. Introducing twice-lifetime screening accelerated elimination by 11-31 years. Long-term vaccine protection was required for elimination. INTERPRETATION: Predictions were consistent across our three models and suggest that high HPV vaccination coverage of girls can lead to cervical cancer elimination in most LMICs by the end of the century. Screening with high uptake will expedite reductions and will be necessary to eliminate cervical cancer in countries with the highest burden. FUNDING: WHO, UNDP, UN Population Fund, UNICEF-WHO-World Bank Special Program of Research, Development and Research Training in Human Reproduction, Canadian Institute of Health Research, Fonds de recherche du Québec-Santé, Compute Canada, National Health and Medical Research Council Australia Centre for Research Excellence in Cervical Cancer Control.


Assuntos
Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero/prevenção & controle , Adulto , Países em Desenvolvimento , Detecção Precoce de Câncer/métodos , Estudos de Viabilidade , Feminino , Humanos , Incidência , Renda , Programas de Rastreamento/métodos , Modelos Biológicos , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/virologia , Vacinação
11.
Lancet ; 395(10224): 591-603, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32007142

RESUMO

BACKGROUND: WHO is developing a global strategy towards eliminating cervical cancer as a public health problem, which proposes an elimination threshold of four cases per 100 000 women and includes 2030 triple-intervention coverage targets for scale-up of human papillomavirus (HPV) vaccination to 90%, twice-lifetime cervical screening to 70%, and treatment of pre-invasive lesions and invasive cancer to 90%. We assessed the impact of achieving the 90-70-90 triple-intervention targets on cervical cancer mortality and deaths averted over the next century. We also assessed the potential for the elimination initiative to support target 3.4 of the UN Sustainable Development Goals (SDGs)-a one-third reduction in premature mortality from non-communicable diseases by 2030. METHODS: The WHO Cervical Cancer Elimination Modelling Consortium (CCEMC) involves three independent, dynamic models of HPV infection, cervical carcinogenesis, screening, and precancer and invasive cancer treatment. Reductions in age-standardised rates of cervical cancer mortality in 78 low-income and lower-middle-income countries (LMICs) were estimated for three core scenarios: girls-only vaccination at age 9 years with catch-up for girls aged 10-14 years; girls-only vaccination plus once-lifetime screening and cancer treatment scale-up; and girls-only vaccination plus twice-lifetime screening and cancer treatment scale-up. Vaccination was assumed to provide 100% lifetime protection against infections with HPV types 16, 18, 31, 33, 45, 52, and 58, and to scale up to 90% coverage in 2020. Cervical screening involved HPV testing at age 35 years, or at ages 35 years and 45 years, with scale-up to 45% coverage by 2023, 70% by 2030, and 90% by 2045, and we assumed that 50% of women with invasive cervical cancer would receive appropriate surgery, radiotherapy, and chemotherapy by 2023, which would increase to 90% by 2030. We summarised results using the median (range) of model predictions. FINDINGS: In 2020, the estimated cervical cancer mortality rate across all 78 LMICs was 13·2 (range 12·9-14·1) per 100 000 women. Compared to the status quo, by 2030, vaccination alone would have minimal impact on cervical cancer mortality, leading to a 0·1% (0·1-0·5) reduction, but additionally scaling up twice-lifetime screening and cancer treatment would reduce mortality by 34·2% (23·3-37·8), averting 300 000 (300 000-400 000) deaths by 2030 (with similar results for once-lifetime screening). By 2070, scaling up vaccination alone would reduce mortality by 61·7% (61·4-66·1), averting 4·8 million (4·1-4·8) deaths. By 2070, additionally scaling up screening and cancer treatment would reduce mortality by 88·9% (84·0-89·3), averting 13·3 million (13·1-13·6) deaths (with once-lifetime screening), or by 92·3% (88·4-93·0), averting 14·6 million (14·1-14·6) deaths (with twice-lifetime screening). By 2120, vaccination alone would reduce mortality by 89·5% (86·6-89·9), averting 45·8 million (44·7-46·4) deaths. By 2120, additionally scaling up screening and cancer treatment would reduce mortality by 97·9% (95·0-98·0), averting 60·8 million (60·2-61·2) deaths (with once-lifetime screening), or by 98·6% (96·5-98·6), averting 62·6 million (62·1-62·8) deaths (with twice-lifetime screening). With the WHO triple-intervention strategy, over the next 10 years, about half (48% [45-55]) of deaths averted would be in sub-Saharan Africa and almost a third (32% [29-34]) would be in South Asia; over the next 100 years, almost 90% of deaths averted would be in these regions. For premature deaths (age 30-69 years), the WHO triple-intervention strategy would result in rate reductions of 33·9% (24·4-37·9) by 2030, 96·2% (94·3-96·8) by 2070, and 98·6% (96·9-98·8) by 2120. INTERPRETATION: These findings emphasise the importance of acting immediately on three fronts to scale up vaccination, screening, and treatment for pre-invasive and invasive cervical cancer. In the next 10 years, a one-third reduction in the rate of premature mortality from cervical cancer in LMICs is possible, contributing to the realisation of the 2030 UN SDGs. Over the next century, successful implementation of the WHO elimination strategy would reduce cervical cancer mortality by almost 99% and save more than 62 million women's lives. FUNDING: WHO, UNDP, UN Population Fund, UNICEF-WHO-World Bank Special Program of Research, Development and Research Training in Human Reproduction, Germany Federal Ministry of Health, National Health and Medical Research Council Australia, Centre for Research Excellence in Cervical Cancer Control, Canadian Institute of Health Research, Compute Canada, and Fonds de recherche du Québec-Santé.


Assuntos
Neoplasias do Colo do Útero/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Países em Desenvolvimento , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Renda , Lactente , Recém-Nascido , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Modelos Biológicos , Mortalidade/tendências , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/virologia , Vacinação/métodos , Organização Mundial da Saúde , Adulto Jovem
12.
Sex Transm Dis ; 48(4): 278-284, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33492104

RESUMO

INTRODUCTION: We estimated the lifetime medical costs of diagnosed cases of diseases attributable to human papillomavirus (HPV) infections acquired in 2018. METHODS: We adapted an existing mathematical model of HPV transmission and associated diseases to estimate the lifetime number of diagnosed cases of disease (genital warts; cervical intraepithelial neoplasia; and cervical, vaginal, vulvar, penile, anal, and oropharyngeal cancers) attributable to HPV infections that were acquired in 2018. For each of these outcomes, we multiplied the estimated number of cases by the estimated lifetime medical cost per case obtained from previous studies. We estimated the costs of recurrent respiratory papillomatosis in a separate calculation. Future costs were discounted at 3% annually. RESULTS: The estimated discounted lifetime medical cost of diseases attributable to HPV infections acquired in 2018 among people aged 15 to 59 years was $774 million (in 2019 US dollars), of which approximately half was accounted for by infections in those aged 15 to 24 years. Human papillomavirus infections in women accounted for approximately 90% of the lifetime number of diagnosed cases of disease and 70% of the lifetime cost attributable to HPV infections acquired in 2018 among those aged 15 to 59 years. CONCLUSIONS: We estimated the lifetime medical costs of diseases attributable to HPV infections acquired in 2018 to be $774 million. This estimate is lower than previous estimates, likely due to the impact of HPV vaccination. The lifetime cost of disease attributable to incident HPV infections is expected to decrease further over time as HPV vaccination coverage increases.


Assuntos
Condiloma Acuminado , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Adolescente , Adulto , Condiloma Acuminado/epidemiologia , Análise Custo-Benefício , Feminino , Humanos , Pessoa de Meia-Idade , Infecções por Papillomavirus/epidemiologia , Adulto Jovem
13.
Sex Transm Dis ; 48(4): 215-221, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33492093

RESUMO

BACKGROUND: We estimated the lifetime medical costs attributable to sexually transmitted infections (STIs) acquired in 2018, including sexually acquired human immunodeficiency virus (HIV). METHODS: We estimated the lifetime medical costs of infections acquired in 2018 in the United States for 8 STIs: chlamydia, gonorrhea, trichomoniasis, syphilis, genital herpes, human papillomavirus (HPV), hepatitis B, and HIV. We limited our analysis to lifetime medical costs incurred for treatment of STIs and for treatment of related sequelae; we did not include other costs, such as STI prevention. For each STI, except HPV, we calculated the lifetime medical cost by multiplying the estimated number of incident infections in 2018 by the estimated lifetime cost per infection. For HPV, we calculated the lifetime cost based on the projected lifetime incidence of health outcomes attributed to HPV infections acquired in 2018. Future costs were discounted at 3% annually. RESULTS: Incident STIs in 2018 imposed an estimated $15.9 billion (25th-75th percentile: $14.9-16.9 billion) in discounted, lifetime direct medical costs (2019 US dollars). Most of this cost was due to sexually acquired HIV ($13.7 billion) and HPV ($0.8 billion). STIs in women accounted for about one fourth of the cost of incident STIs when including HIV, but about three fourths when excluding HIV. STIs among 15- to 24-year-olds accounted for $4.2 billion (26%) of the cost of incident STIs. CONCLUSIONS: Incident STIs continue to impose a considerable lifetime medical cost burden in the United States. These results can inform health economic analyses to promote the use of cost-effective STI prevention interventions to reduce this burden.


Assuntos
Gonorreia , Infecções por HIV , Herpes Genital , Infecções Sexualmente Transmissíveis , Sífilis , Tricomoníase , Feminino , Infecções por HIV/epidemiologia , Herpes Genital/epidemiologia , Humanos , Infecções Sexualmente Transmissíveis/epidemiologia , Tricomoníase/epidemiologia , Estados Unidos/epidemiologia
14.
Sex Transm Dis ; 48(4): 273-277, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33492097

RESUMO

INTRODUCTION: Human papillomavirus (HPV) can cause anogenital warts and several types of cancer, including cervical cancers and precancers. We estimated the prevalence, incidence, and number of persons with prevalent and incident HPV infections in the United States in 2018. METHODS: Prevalence and incidence were estimated for infections with any HPV (any of 37 types detected using Linear Array) and disease-associated HPV, 2 types that cause anogenital warts plus 14 types detected by tests used for cervical cancer screening (HPV 6/11/16/18/31/33/35/39/45/51/52/56/58/59/66/68). We used the 2013-2016 National Health and Nutrition Examination Survey to estimate prevalence among 15- to 59-year-olds, overall and by sex. Incidences in 2018 were estimated per 10,000 persons using an individual-based transmission-dynamic type-specific model calibrated to US data. We estimated number of infected persons by applying prevalences and incidences to 2018 US population estimates. RESULTS: Prevalence of infection with any HPV was 40.0% overall, 41.8% in men, and 38.4% in women; prevalence of infection with disease-associated HPV was 24.2% in men and 19.9% in women. An estimated 23.4 and 19.2 million men and women had a disease-associated HPV type infection in 2018. Incidences of any and disease-associated HPV infection were 1222 and 672 per 10,000 persons; incidence of disease-associated HPV infection was 708 per 10,000 men and 636 per 10,000 women. An estimated 6.9 and 6.1 million men and women had an incident infection with a disease-associated HPV type in 2018. CONCLUSIONS: We document a high HPV burden of infection in the United States in 2018, with 42 million persons infected with disease-associated HPV and 13 million persons acquiring a new infection. Although most infections clear, some disease-associated HPV type infections progress to disease. The HPV burden highlights the need for continued monitoring of HPV-associated cancers, cervical cancer screening, and HPV vaccination to track and prevent disease.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Detecção Precoce de Câncer , Feminino , Humanos , Incidência , Masculino , Inquéritos Nutricionais , Infecções por Papillomavirus/epidemiologia , Prevalência , Estados Unidos/epidemiologia , Neoplasias do Colo do Útero/epidemiologia
15.
Prev Med ; 144: 106354, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309871

RESUMO

The Director-General of the World Health Organization has called for global action towards elimination of cervical cancer as a public health problem. Cervical cancer is caused by human papillomavirus (HPV), an infectious agent with no non-human reservoir. One way to achieve this is through very high levels of vaccine coverage that could enable global eradication of vaccine-type HPV. Using the case study of India, we show that HPV eradication can meet all the Dahlem and Strüngmann criteria for feasibility of eradication. It can be achieved with 90% gender-neutral HPV vaccine coverage together with 95% coverage in high-risk groups such as female sex workers. Such a strategy would likely be cost-effective compared to no vaccination. Although it would be more costly in the short-term than achieving cervical cancer elimination alone, it would save costs in the long-term by removing or at least sharply reducing the need for preventive measures.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Profissionais do Sexo , Neoplasias do Colo do Útero , Análise Custo-Benefício , Estudos de Viabilidade , Feminino , Humanos , Índia , Papillomaviridae , Infecções por Papillomavirus/prevenção & controle , Saúde Pública , Neoplasias do Colo do Útero/prevenção & controle , Vacinação
16.
Ann Intern Med ; 172(1): 22-29, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31816629

RESUMO

Background: In the United States, the routine age for human papillomavirus (HPV) vaccination is 11 to 12 years, with catch-up vaccination through age 26 years for women and 21 years for men. U.S. vaccination policy on use of the 9-valent HPV vaccine in adult women and men is being reviewed. Objective: To evaluate the added population-level effectiveness and cost-effectiveness of extending the current U.S. HPV vaccination program to women aged 27 to 45 years and men aged 22 to 45 years. Design: The analysis used HPV-ADVISE (Agent-based Dynamic model for VaccInation and Screening Evaluation), an individual-based transmission dynamic model of HPV infection and associated diseases, calibrated to age-specific U.S. data. Data Sources: Published data. Target Population: Women aged 27 to 45 years and men aged 22 to 45 years in the United States. Time Horizon: 100 years. Perspective: Health care sector. Intervention: 9-valent HPV vaccination. Outcome Measures: HPV-associated outcomes prevented and cost-effectiveness ratios. Results of Base-Case Analysis: The model predicts that the current U.S. HPV vaccination program will reduce the number of diagnoses of anogenital warts and cervical intraepithelial neoplasia of grade 2 or 3 and cases of cervical cancer and noncervical HPV-associated cancer by 82%, 80%, 59%, and 39%, respectively, over 100 years and is cost saving (vs. no vaccination). In contrast, extending vaccination to women and men aged 45 years is predicted to reduce these outcomes by an additional 0.4, 0.4, 0.2, and 0.2 percentage points, respectively. Vaccinating women and men up to age 30, 40, and 45 years is predicted to cost $830 000, $1 843 000, and $1 471 000, respectively, per quality-adjusted life-year gained (vs. current vaccination). Results of Sensitivity Analysis: Results were most sensitive to assumptions about natural immunity and progression rates after infection, historical vaccination coverage, and vaccine efficacy. Limitation: Uncertainty about the proportion of HPV-associated disease due to infections after age 26 years and about the level of herd effects from the current HPV vaccination program. Conclusion: The current HPV vaccination program is predicted to be cost saving. Extending vaccination to older ages is predicted to produce small additional health benefits and result in substantially higher incremental cost-effectiveness ratios than the current recommendation. Primary Funding Source: Centers for Disease Control and Prevention.


Assuntos
Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/uso terapêutico , Adulto , Fatores Etários , Análise Custo-Benefício , Feminino , Custos de Cuidados de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/economia , Vacinas contra Papillomavirus/economia , Resultado do Tratamento , Estados Unidos/epidemiologia , Adulto Jovem
17.
Lancet ; 394(10197): 497-509, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255301

RESUMO

BACKGROUND: More than 10 years have elapsed since human papillomavirus (HPV) vaccination was implemented. We did a systematic review and meta-analysis of the population-level impact of vaccinating girls and women against human papillomavirus on HPV infections, anogenital wart diagnoses, and cervical intraepithelial neoplasia grade 2+ (CIN2+) to summarise the most recent evidence about the effectiveness of HPV vaccines in real-world settings and to quantify the impact of multiple age-cohort vaccination. METHODS: In this updated systematic review and meta-analysis, we used the same search strategy as in our previous paper. We searched MEDLINE and Embase for studies published between Feb 1, 2014, and Oct 11, 2018. Studies were eligible if they compared the frequency (prevalence or incidence) of at least one HPV-related endpoint (genital HPV infections, anogenital wart diagnoses, or histologically confirmed CIN2+) between pre-vaccination and post-vaccination periods among the general population and if they used the same population sources and recruitment methods before and after vaccination. Our primary assessment was the relative risk (RR) comparing the frequency (prevalence or incidence) of HPV-related endpoints between the pre-vaccination and post-vaccination periods. We stratified all analyses by sex, age, and years since introduction of HPV vaccination. We used random-effects models to estimate pooled relative risks. FINDINGS: We identified 1702 potentially eligible articles for this systematic review and meta-analysis, and included 65 articles in 14 high-income countries: 23 for HPV infection, 29 for anogenital warts, and 13 for CIN2+. After 5-8 years of vaccination, the prevalence of HPV 16 and 18 decreased significantly by 83% (RR 0·17, 95% CI 0·11-0·25) among girls aged 13-19 years, and decreased significantly by 66% (RR 0·34, 95% CI 0·23-0·49) among women aged 20-24 years. The prevalence of HPV 31, 33, and 45 decreased significantly by 54% (RR 0·46, 95% CI 0·33-0·66) among girls aged 13-19 years. Anogenital wart diagnoses decreased significantly by 67% (RR 0·33, 95% CI 0·24-0·46) among girls aged 15-19 years, decreased significantly by 54% (RR 0·46, 95% CI 0.36-0.60) among women aged 20-24 years, and decreased significantly by 31% (RR 0·69, 95% CI 0·53-0·89) among women aged 25-29 years. Among boys aged 15-19 years anogenital wart diagnoses decreased significantly by 48% (RR 0·52, 95% CI 0·37-0·75) and among men aged 20-24 years they decreased significantly by 32% (RR 0·68, 95% CI 0·47-0·98). After 5-9 years of vaccination, CIN2+ decreased significantly by 51% (RR 0·49, 95% CI 0·42-0·58) among screened girls aged 15-19 years and decreased significantly by 31% (RR 0·69, 95% CI 0·57-0·84) among women aged 20-24 years. INTERPRETATION: This updated systematic review and meta-analysis includes data from 60 million individuals and up to 8 years of post-vaccination follow-up. Our results show compelling evidence of the substantial impact of HPV vaccination programmes on HPV infections and CIN2+ among girls and women, and on anogenital warts diagnoses among girls, women, boys, and men. Additionally, programmes with multi-cohort vaccination and high vaccination coverage had a greater direct impact and herd effects. FUNDING: WHO, Canadian Institutes of Health Research, Fonds de recherche du Québec - Santé.


Assuntos
Condiloma Acuminado/epidemiologia , Infecções por Papillomavirus/epidemiologia , Vacinas contra Papillomavirus/administração & dosagem , Displasia do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Condiloma Acuminado/prevenção & controle , Condiloma Acuminado/virologia , Determinação de Ponto Final , Feminino , Humanos , Incidência , Masculino , Vacinação em Massa , Papillomaviridae/classificação , Papillomaviridae/efeitos dos fármacos , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/farmacologia , Prevalência , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/virologia , Adulto Jovem , Displasia do Colo do Útero/prevenção & controle , Displasia do Colo do Útero/virologia
18.
CMAJ ; 192(40): E1146-E1155, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32907820

RESUMO

BACKGROUND: Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely passive, which impedes epidemic control. We defined active testing strategies for SARS-CoV-2 using reverse transcription polymerase chain reaction (RT-PCR) for groups at increased risk of acquiring SARS-CoV-2 in all Canadian provinces. METHODS: We identified 5 groups who should be prioritized for active RT-PCR testing: contacts of people who are positive for SARS-CoV-2, and 4 at-risk populations - hospital employees, community health care workers and people in long-term care facilities, essential business employees, and schoolchildren and staff. We estimated costs, human resources and laboratory capacity required to test people in each group or to perform surveillance testing in random samples. RESULTS: During July 8-17, 2020, across all provinces in Canada, an average of 41 751 RT-PCR tests were performed daily; we estimated this required 5122 personnel and cost $2.4 million per day ($67.8 million per month). Systematic contact tracing and testing would increase personnel needs 1.2-fold and monthly costs to $78.9 million. Conducted over a month, testing all hospital employees would require 1823 additional personnel, costing $29.0 million; testing all community health care workers and persons in long-term care facilities would require 11 074 additional personnel and cost $124.8 million; and testing all essential employees would cost $321.7 million, requiring 25 965 added personnel. Testing the larger population within schools over 6 weeks would require 46 368 added personnel and cost $816.0 million. Interventions addressing inefficiencies, including saliva-based sampling and pooling samples, could reduce costs by 40% and personnel by 20%. Surveillance testing in population samples other than contacts would cost 5% of the cost of a universal approach to testing at-risk populations. INTERPRETATION: Active testing of groups at increased risk of acquiring SARS-CoV-2 appears feasible and would support the safe reopening of the economy and schools more broadly. This strategy also appears affordable compared with the $169.2 billion committed by the federal government as a response to the pandemic as of June 2020.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/economia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/economia , Programas de Rastreamento/economia , Pandemias/economia , Pneumonia Viral/diagnóstico , Pneumonia Viral/economia , COVID-19 , Teste para COVID-19 , Canadá , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Reação em Cadeia da Polimerase em Tempo Real/economia , Medição de Risco/economia , Fatores de Risco , SARS-CoV-2
19.
BMC Med ; 17(1): 163, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31422772

RESUMO

BACKGROUND: Despite the increasing popularity of multi-model comparison studies and their ability to inform policy recommendations, clear guidance on how to conduct multi-model comparisons is not available. Herein, we present guidelines to provide a structured approach to comparisons of multiple models of interventions against infectious diseases. The primary target audience for these guidelines are researchers carrying out model comparison studies and policy-makers using model comparison studies to inform policy decisions. METHODS: The consensus process used for the development of the guidelines included a systematic review of existing model comparison studies on effectiveness and cost-effectiveness of vaccination, a 2-day meeting and guideline development workshop during which mathematical modellers from different disease areas critically discussed and debated the guideline content and wording, and several rounds of comments on sequential versions of the guidelines by all authors. RESULTS: The guidelines provide principles for multi-model comparisons, with specific practice statements on what modellers should do for six domains. The guidelines provide explanation and elaboration of the principles and practice statements as well as some examples to illustrate these. The principles are (1) the policy and research question - the model comparison should address a relevant, clearly defined policy question; (2) model identification and selection - the identification and selection of models for inclusion in the model comparison should be transparent and minimise selection bias; (3) harmonisation - standardisation of input data and outputs should be determined by the research question and value of the effort needed for this step; (4) exploring variability - between- and within-model variability and uncertainty should be explored; (5) presenting and pooling results - results should be presented in an appropriate way to support decision-making; and (6) interpretation - results should be interpreted to inform the policy question. CONCLUSION: These guidelines should help researchers plan, conduct and report model comparisons of infectious diseases and related interventions in a systematic and structured manner for the purpose of supporting health policy decisions. Adherence to these guidelines will contribute to greater consistency and objectivity in the approach and methods used in multi-model comparisons, and as such improve the quality of modelled evidence for policy.


Assuntos
Doenças Transmissíveis/terapia , Política de Saúde , Modelos Teóricos , Análise Custo-Benefício , Tomada de Decisões , Humanos
20.
CMAJ ; 191(34): E932-E939, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451524

RESUMO

BACKGROUND: Two vaccines against herpes zoster are currently authorized for use in Canada: the recombinant subunit zoster vaccine and live attenuated zoster vaccine. We compared the effectiveness and cost-effectiveness of these 2 vaccines. METHODS: We used a decision analytic static cohort model parametrized with Canadian epidemiologic and economic data. We performed the economic analysis from the health care system perspective, using a lifetime horizon and a 3% discount rate for costs and benefits. The primary outcome was the incremental cost per quality-adjusted life-year (QALY) gained, relative to no vaccination. We ran 30 000 simulations varying all model parameters, including vaccine costs, efficacy and waning. RESULTS: The number needed to vaccinate (NNV) was higher for the live attenuated zoster vaccine than for the recombinant subunit zoster vaccine for all herpes zoster-related events at all ages. For example, in persons exactly 65 years old, for herpes zoster, median NNV was 21 (90% uncertainty interval [UI] 13-31) versus 8 (90% UI 6-18), and for postherpetic neuralgia, NNV was 64 (90% UI 33-93) versus 31 (90% UI 23-73). For the recombinant vaccine, the median cost-effectiveness ratios varied between cost-saving and $25 881 per QALY gained for adults aged 50 years or older. For the live vaccine, the cost-effectiveness ratios varied between cost-saving and $130 587 per QALY gained and were less than $45 000 per QALY gained only for those 65 to 75 years old. Given its higher efficacy, we estimated that the cost for the complete series of the recombinant vaccine could be $150 to $200 more than the cost of the live vaccine and still be considered cost-effective. INTERPRETATION: Our model predicted that the recombinant subunit zoster vaccine is likely cost-effective in Canada for adults 60 years or older, and is likely more cost-effective than live attenuated zoster vaccine. These results have informed updated national and provincial recommendations on herpes zoster vaccination.


Assuntos
Análise Custo-Benefício , Vacina contra Herpes Zoster/economia , Herpes Zoster/prevenção & controle , Vacinação em Massa/economia , Idoso , Canadá/epidemiologia , Técnicas de Apoio para a Decisão , Herpes Zoster/epidemiologia , Vacina contra Herpes Zoster/uso terapêutico , Humanos , Pessoa de Meia-Idade , Neuralgia Pós-Herpética/epidemiologia , Neuralgia Pós-Herpética/prevenção & controle , Anos de Vida Ajustados por Qualidade de Vida , Vacinas Atenuadas/economia , Vacinas Sintéticas/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA