Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Odontology ; 109(1): 174-183, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32734501

RESUMO

Evaluate the cytocompatibility of Calen®/ZO, Calcicur®, Vitapex®, Endoflas®, and zinc oxide/eugenol-based (ZOE) root canal pastes (RCP) to human primary osteoblasts (HPO) through a simplified model for primary teeth. The model employed pipette tips filled with 0.037 g of paste, exposed to 185 µL of culture medium for 24 h (n = 6). Release of components was analysed by Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR). HPO were exposed to conditioned media for 24 h. Cell viability was assessed by cell density and metabolic activity, and release of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF) and fibroblast growth factor (bFGF) by immunological assay. Physicochemical properties and antimicrobial efficacy were also evaluated. 1H-NMR spectra analysis showed similarity between ZOE, Endoflas®, Calcicur®, and Vitapex® compared to Calen®/ZO and positive control, which showed distinct released components. Calen®/ZO and Calcicur® exhibited high alkaline pH in all periods and showed similar solubility. Calen®/ZO, ZOE, and Vitapex® showed similar flow rate. Calen®/ZO, Calcicur®, and Vitapex® did not exhibit antimicrobial efficacy. Calen®/ZO presented cytotoxicity (p < 0.05). Pastes did not increase IL-6 release compared to control. Apart from Vitapex®, all pastes significantly induced VEGF/bFGF release. Interactive effects among released products may affect biological response to filling pastes. Calcicur®, ZOE, Endoflas® and Calen®/ZO presented good to moderate cytocompatibility, with low impact on pro-inflammatory cytokine release and induction of growth factors of interest to tissue repair. This simplified model, specific for the evaluation of the cytocompatibility of RCPs on primary teeth, suggests how these pastes might contribute to bone repair in clinical situations of apical periodontitis in children.


Assuntos
Periodontite Periapical , Materiais Restauradores do Canal Radicular , Hidróxido de Cálcio , Criança , Humanos , Materiais Restauradores do Canal Radicular/farmacologia , Tratamento do Canal Radicular , Dente Decíduo , Fator A de Crescimento do Endotélio Vascular , Cimento de Óxido de Zinco e Eugenol/farmacologia
2.
Materials (Basel) ; 14(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34640255

RESUMO

Successful biomaterials for bone tissue therapy must present different biocompatible properties, such as the ability to stimulate the migration and proliferation of osteogenic cells on the implantable surface, to increase attachment and avoid the risks of implant movement after surgery. The present work investigates the applicability of a three-dimensional (3D) model of bone cells (osteospheres) in the evaluation of osteoconductive properties of different implant surfaces. Three different titanium surface treatments were tested: machined (MA), sandblasting and acid etching (BE), and Hydroxyapatite coating by plasma spray (PSHA). The surfaces were characterized by Scanning Electron Microscopy (SEM) and atomic force microscopy (AFM), confirming that they present very distinct roughness. After seeding the osteospheres, cell-surface interactions were studied in relation to cell proliferation, migration, and spreading. The results show that BE surfaces present higher densities of cells, leaving the aggregates towards than titanium surfaces, providing more evidence of migration. The PSHA surface presented the lowest performance in all analyses. The results indicate that the 3D model allows the focal analysis of an in vitro cell/surfaces interaction of cells and surfaces. Moreover, by demonstrating the agreement with the clinical data observed in the literature, they suggest a potential use as a predictive preclinical tool for investigating osteoconductive properties of novel biomaterials for bone therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA