Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Circ Res ; 125(9): 855-867, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31600125

RESUMO

Given that cardiovascular safety concerns remain the leading cause of drug attrition at the preclinical drug development stage, the National Center for Toxicological Research of the US Food and Drug Administration hosted a workshop to discuss current gaps and challenges in translating preclinical cardiovascular safety data to humans. This white paper summarizes the topics presented by speakers from academia, industry, and government intended to address the theme of improving cardiotoxicity assessment in drug development. The main conclusion is that to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development. Potential regulatory applications of human-derived cardiomyocytes and future directions in employing human-relevant platforms to fill the gaps and overcome barriers and challenges in preclinical cardiovascular safety assessment were discussed. This paper is intended to serve as an initial step in a public-private collaborative development program for human-relevant cardiotoxicity tools, particularly for cardiotoxicities characterized by contractile dysfunction or structural injury.


Assuntos
Cardiotoxicidade/epidemiologia , Cardiotoxinas/toxicidade , Educação/normas , Relatório de Pesquisa/normas , United States Food and Drug Administration/normas , Animais , Cardiotoxicidade/prevenção & controle , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Avaliação Pré-Clínica de Medicamentos/tendências , Educação/tendências , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Relatório de Pesquisa/tendências , Estados Unidos/epidemiologia , United States Food and Drug Administration/tendências
2.
Chem Res Toxicol ; 29(4): 452-72, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26625186

RESUMO

Discovery toxicology focuses on the identification of the most promising drug candidates through the development and implementation of lead optimization strategies and hypothesis-driven investigation of issues that enable rational and informed decision-making. The major goals are to [a] identify and progress the drug candidate with the best overall drug safety profile for a therapeutic area, [b] remove the most toxic drugs from the portfolio prior to entry into humans to reduce clinical attrition due to toxicity, and [c] establish a well-characterized hazard and translational risk profile to enable clinical trial designs. This is accomplished through a framework that balances the multiple considerations to identify a drug candidate with the overall best drug characteristics and provides a cogent understanding of mechanisms of toxicity. The framework components include establishing a target candidate profile for each program that defines the qualities of a successful candidate based on the intended therapeutic area, including the risk tolerance for liabilities; evaluating potential liabilities that may result from engaging the therapeutic target (pharmacology-mediated or on-target) and that are chemical structure-mediated (off-target); and characterizing identified liabilities. Lead optimization and investigation relies upon the integrated use of a variety of technologies and models (in silico, in vitro, and in vivo) that have achieved a sufficient level of qualification or validation to provide confidence in their use. We describe the strategic applications of various nonclinical models (established and new) for a holistic and integrated risk assessment that is used for rational decision-making. While this review focuses on strategies for small molecules, the overall concepts, approaches, and technologies are generally applicable to biotherapeutics.


Assuntos
Descoberta de Drogas/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , Preparações Farmacêuticas/química , Farmacologia/métodos , Medição de Risco/métodos , Testes de Toxicidade/métodos
3.
Front Pharmacol ; 10: 934, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555128

RESUMO

Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29155283

RESUMO

INTRODUCTION: Cardiotoxicity assessment using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) forms a key component of the Comprehensive in Vitro Proarrhythmia Assay (CiPA). A potentially impactful factor on iPSC-CM testing is the presence of serum in the experimental media. Generally, serum-free media is used to most accurately reproduce "free" drug concentration. However, caution is needed; drug solubility and cardiomyocyte electrophysiology could be affected by media formulation, potentially impacting interpretation of drug-induced effects. METHODS: Effects of 25 drugs on properties of spontaneous field potentials in iPSC-CMs were assayed using a high-throughput microelectrode array (MEA) in two media formulations: serum-containing and serum-free. Comparative analysis was conducted on rate-corrected field potential duration (FPDc) and prevalence of arrhythmic events. Further MEA experiments were conducted, varying percentages of serum as well as carbon substrate components. Comparative LC-MS/MS analysis was done on two compounds to evaluate drug concentrations. RESULTS: In serum-free media, 9 drugs prolonged FPDc. In serum-containing, 11 drugs prolonged FPDc. Eighteen drugs induced arrhythmias, 8 of these induced arrhythmias at lower concentrations in serum-containing media. At the highest non-arrhythmic concentrations, 13 of 25 drugs exhibited significant differences in FPDc prolongation/shortening between the media. Increasing fractions of serum in media yielded higher FPDc measurements. LC-MS/MS analysis of moxifloxacin and quinidine showed higher concentrations in serum-containing media. DISCUSSION: The present study highlights media formulation as an important consideration for cardiac safety testing with iPSC-CMs. Results described here suggest that media formulation influences both compound availability and baseline electrophysiological properties. Special attention should be paid to media for future iPSC-CM assays.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Cardiotoxicidade/etiologia , Meios de Cultura/efeitos adversos , Meios de Cultura/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Soro/metabolismo , Arritmias Cardíacas/metabolismo , Cardiotoxicidade/metabolismo , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Medição de Risco
5.
Cell Rep ; 24(13): 3582-3592, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257217

RESUMO

To assess the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as an in vitro proarrhythmia model, we evaluated the concentration dependence and sources of variability of electrophysiologic responses to 28 drugs linked to low, intermediate, and high torsades de pointes (TdP) risk categories using two commercial cell lines and standardized protocols in a blinded multisite study using multielectrode array or voltage-sensing optical approaches. Logistical and ordinal linear regression models were constructed using drug responses as predictors and TdP risk categories as outcomes. Three of seven predictors (drug-induced arrhythmia-like events and prolongation of repolarization at either maximum tested or maximal clinical exposures) categorized drugs with reasonable accuracy (area under the curve values of receiver operator curves ∼0.8). hiPSC-CM line, test site, and platform had minimal influence on drug categorization. These results demonstrate the utility of hiPSC-CMs to detect drug-induced proarrhythmic effects as part of the evolving Comprehensive In Vitro Proarrhythmia Assay paradigm.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Eletrofisiologia/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Torsades de Pointes/induzido quimicamente , Cardiotoxicidade , Linhagem Celular , Reprogramação Celular , Avaliação Pré-Clínica de Medicamentos/normas , Eletrofisiologia/normas , Humanos , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia
6.
Toxicol Sci ; 155(1): 234-247, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27701120

RESUMO

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) hold promise for assessment of drug-induced arrhythmias and are being considered for use under the comprehensive in vitro proarrhythmia assay (CiPA). We studied the effects of 26 drugs and 3 drug combinations on 2 commercially available iPSC-CM types using high-throughput voltage-sensitive dye and microelectrode-array assays being studied for the CiPA initiative and compared the results with clinical QT prolongation and torsade de pointes (TdP) risk. Concentration-dependent analysis comparing iPSC-CMs to clinical trial results demonstrated good correlation between drug-induced rate-corrected action potential duration and field potential duration (APDc and FPDc) prolongation and clinical trial QTc prolongation. Of 20 drugs studied that exhibit clinical QTc prolongation, 17 caused APDc prolongation (16 in Cor.4U and 13 in iCell cardiomyocytes) and 16 caused FPDc prolongation (16 in Cor.4U and 10 in iCell cardiomyocytes). Of 14 drugs that cause TdP, arrhythmias occurred with 10 drugs. Lack of arrhythmic beating in iPSC-CMs for the four remaining drugs could be due to differences in relative levels of expression of individual ion channels. iPSC-CMs responded consistently to human ether-a-go-go potassium channel blocking drugs (APD prolongation and arrhythmias) and calcium channel blocking drugs (APD shortening and prevention of arrhythmias), with a more variable response to late sodium current blocking drugs. Current results confirm the potential of iPSC-CMs for proarrhythmia prediction under CiPA, where iPSC-CM results would serve as a check to ion channel and in silico modeling prediction of proarrhythmic risk. A multi-site validation study is warranted.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Pesquisa Translacional Biomédica , Humanos
7.
Cell Rep ; 9(4): 1173-82, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25456120

RESUMO

Parkinson's disease (PD) has been attributed to a combination of genetic and nongenetic factors. We studied a set of monozygotic twins harboring the heterozygous glucocerebrosidase mutation (GBA N370S) but clinically discordant for PD. We applied induced pluripotent stem cell (iPSC) technology for PD disease modeling using the twins' fibroblasts to evaluate and dissect the genetic and nongenetic contributions. Utilizing fluorescence-activated cell sorting, we obtained a homogenous population of "footprint-free" iPSC-derived midbrain dopaminergic (mDA) neurons. The mDA neurons from both twins had ∼50% GBA enzymatic activity, ∼3-fold elevated α-synuclein protein levels, and a reduced capacity to synthesize and release dopamine. Interestingly, the affected twin's neurons showed an even lower dopamine level, increased monoamine oxidase B (MAO-B) expression, and impaired intrinsic network activity. Overexpression of wild-type GBA and treatment with MAO-B inhibitors normalized α-synuclein and dopamine levels, suggesting a combination therapy for the affected twin.


Assuntos
Neurônios Dopaminérgicos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Doença de Parkinson/patologia , Gêmeos Monozigóticos , Biomarcadores/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/enzimologia , Citometria de Fluxo , Glucosilceramidase/genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Mutação/genética , Doença de Parkinson/enzimologia , Fenótipo , Análise de Sequência de RNA , alfa-Sinucleína/metabolismo
8.
Sci Rep ; 3: 1463, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23492920

RESUMO

New small molecules that regulate the step-wise differentiation of human pluripotent stem cells into dopaminergic neurons have been identified. The steroid, guggulsterone, was found to be the most effective inducer of neural stem cells into dopaminergic neurons. These neurons are extensively characterized and shown to be functional. We believe this new approach offers a practical route to creating neurons of sufficient quality to be used to treat Parkinson's disease patients.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/citologia , Células-Tronco Neurais/citologia , Células-Tronco Pluripotentes/citologia , Pregnenodionas/farmacologia , Técnicas de Cultura de Células , Linhagem Celular , Transplante de Células/métodos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Perfilação da Expressão Gênica , Humanos , Potenciais da Membrana/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Doença de Parkinson/cirurgia , Técnicas de Patch-Clamp , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA