Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 55(8): 1195-203, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26845253

RESUMO

Sugar binding by a cell surface ∼29 kDa lectin (RSL) from the bacterium Ralstonia solanacearum was characterized by NMR spectroscopy. The complexes formed with four monosaccharides and four fucosides were studied. Complete resonance assignments and backbone dynamics were determined for RSL in the sugar-free form and when bound to l-fucose or d-mannose. RSL was found to interact with both the α- and the ß-anomer of l-fucose and the "fucose like" sugars d-arabinose and l-galactose. Peak splitting was observed for some resonances of the binding site residues. The assignment of the split signals to the α- or ß-anomer was confirmed by comparison with the spectra of RSL bound to methyl-α-l-fucoside or methyl-ß-l-fucoside. The backbone dynamics of RSL were sensitive to the presence of ligand, with the protein adopting a more compact structure upon binding to l-fucose. Taking advantage of tryptophan residues in the binding sites, we show that the indole resonance is an excellent reporter on ligand binding. Each sugar resulted in a distinct signature of chemical shift perturbations, suggesting that tryptophan signals are a sufficient probe of sugar binding.


Assuntos
Proteínas de Bactérias/metabolismo , Fucose/metabolismo , Lectinas/metabolismo , Ralstonia solanacearum/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Fucose/análogos & derivados , Lectinas/química , Manose/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Ralstonia solanacearum/química , Alinhamento de Sequência
2.
Nat Microbiol ; 2: 16184, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775685

RESUMO

Virulence of pathogenic bacteria is a tightly controlled process to facilitate invasion and survival in host tissues. Although pathways controlling virulence have been defined in detail, signals modulating these processes are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa causes acute and chronic infections in humans. Disease progression is typically associated with a loss of acute virulence and the emergence of biofilms and chronic behaviour. The acute-to-chronic switch is governed by the global Gac/Rsm pathway. Using a newly developed acute-chronic dual reporter system we show that calcium stimulates the Gac/Rsm pathway via the Gac-associated hybrid histidine kinase LadS. We show that calcium binds to the periplasmic DISMED2 sensor domain of LadS to activate its kinase activity. Activation of the Gac/Rsm pathway by calcium leads to a switch to the chronic program and confers drug tolerance by reducing P. aeruginosa growth rate. Clinical isolates from cystic fibrosis airways retain their calcium response during chronic infections. Our data imply that calcium sensing evolved as an adaptation to the opportunistic lifestyle of P. aeruginosa and that calcium serves as a host signal to balance acute-to-chronic behaviour during infections. Establishing calcium signalling in host-pathogen interaction adds to growing evidence indicating key roles for calcium in bacterial signalling.


Assuntos
Cálcio/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfotransferases/metabolismo , Pseudomonas aeruginosa/patogenicidade , Sinalização do Cálcio , Fibrose Cística/complicações , Interações Hospedeiro-Patógeno , Humanos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA