Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 68(3): 604-18, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23608129

RESUMO

Recent studies all indicated that both the affinities and subdivision of Boraginaceae s.str. are unsatisfactorily resolved. Major open issues are the placement and affinities of Boraginaceae s.str. in Boraginales and the major clades of the family, with especially the large tribes Cynoglosseae and Eritrichieae repeatedly retrieved as non-monophyletic groups, and the doubtful monophyly of several larger genera, especially Cynoglossum and Omphalodes. The present study addresses and solves these questions using two plastid markers (trnL-trnF, rps16) on the basis of a sampling including 16 outgroup taxa and 172 ingroup species from 65 genera. The phylogeny shows high statistical support for most nodes on the backbone and on the individual clades. Boraginaceae s.str. are sister to African Wellstediaceae, Wellstediaceae-Boraginaceae s.str. is sister to African Codonaceae. Echiochileae are retrieved as sister to the remainder of Boraginaceae s.str., which, in turn, fall into two major clades, the Boragineae-Lithospermeae (in a well-supported sister relationship) and the Cynoglosseae s.l. (including Eritrichieae). Cynoglosseae s.l. is highly resolved, with Trichodesmeae (incl. Microcaryum, Lasiocaryum) as sister to the remainder of the group. Eritrichieae s.str. (Eritrichium, Hackelia, Lappula) are resolved on a poorly supported polytomy together with the Omphalodes-clade (incl. Myosotidium, Cynoglossum p.p.), and the Mertensia-clade (incl. O. scorpioides, Asperugo). The Myosotideae (Myosotis, Trigonotis, Pseudomertensia) are retrieved in a well-supported sister-relationship to the core-Cynoglosseae, the latter comprising all other genera sampled. Cynoglossum is retrieved as highly para- and polyphyletic, with a large range of generic segregates embedded in Cynoglossum, but other species of Cynoglossum are sister to Microula or to the American "Eritrichieae" (Cryptantha and allied genera). Representatives of the genus Cynoglossum in its current definition are segregated onto six independent lineages, members of Omphalodes onto three independent lineages. At least 11 of the genera here sampled are deeply nested in other genera. The data show that individual details of nutlet morphology (e.g., winged margins, glochidia) are highly homoplasious. Conversely, a complex of nutlet characters (e.g., characters of the gynobase and cicatrix together with nutlet orientation and sculpturing) tends to circumscribe natural units. Geographical distribution of major clades suggests that the family originated in Africa and western Asia and radiated to eastern Eurasia, with several independent dispersal events into Australia and the New World.


Assuntos
Boraginaceae/classificação , Boraginaceae/genética , Fenótipo , Filogenia , Filogeografia , Plastídeos/genética , Sementes/genética
2.
Ecol Evol ; 13(1): e9736, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36694555

RESUMO

Using the genus Casearia, we assessed the status of nested singletons: individual specimens corresponding to accepted species but in molecular trees appearing nested within clades of closely related species. Normally, such cases would be left undecided, while on the other hand, timely taxonomic decisions are required. We argue that morphological, chorological, and ecological data can be informative to illuminate patterns of speciation. Their use can provide a first step in testing taxon concepts at species level. We focused on five cases of nested singletons in trees of the genus Casearia. We employed PCA and cluster analysis to assess phenotypic differentiation. Using geocoordinates, we calculated niche space differentiation based on 19 bioclim variables, by means of PCA and niche equivalency and similarity tests and generated dot maps. We found that the singletons were morphologically distinctive in two of the five cases (Casearia selloana and C. manausensis), relatively distinctive in two other cases (C. zizyphoides and C. mariquitensis), and partially overlapping in the last case (C. grandiflora). For two cases (C. mariquitensis and C. selloana), ecological niche space was broadly overlapping, in two cases it was found broadly nested (C. grandiflora and C. zizyphoides), and in one case narrowly nested (C. manausensis), but in no case niche differentiation was observed. Niche overlap, similarity and equivalency showed corresponding patterns. Given these data, one would interpret C. selloana and C. manausensis as presumably well-distinguished taxa, their narrow distribution ranges suggesting recently emerging lineages. The other three cases are not clearcut. Morphological data would suggest particularly C. grandiflora conspecific with C. arborea, but differences in the distribution are intriguing. Our approach would reject the notion of potential synonymy based on nested phylogenetic placement for at least two of the five cases. The other case also shows no complete lack of differentiation which would support synonymy.

3.
Ecol Evol ; 11(5): 2110-2172, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717446

RESUMO

High Andean forests harbor a remarkably high biodiversity and play a key role in providing vital ecosystem services for neighboring cities and settlements. However, they are among the most fragmented and threatened ecosystems in the neotropics. To preserve their unique biodiversity, a deeper understanding of the effects of anthropogenic perturbations on them is urgently needed. Here, we characterized the plant communities of high Andean forest remnants in the hinterland of Bogotá in 32 0.04 ha plots. We assessed the woody vegetation and sampled the understory and epiphytic cover. We gathered data on compositional and structural parameters and compiled a broad array of variables related to anthropogenic disturbance, ranging from local to landscape-wide metrics. We also assessed phylogenetic diversity and functional diversity. We employed nonmetric multidimensional scaling (NMDS) to select meaningful variables in a first step of the analysis. Then, we performed partial redundancy analysis (pRDA) and generalized linear models (GLMs) in order to test how selected environmental and anthropogenic variables are affecting the composition, diversity, and aboveground biomass of these forests. Identified woody vegetation and understory layer communities were characterized by differences in elevation, temperature, and relative humidity, but were also related to different levels of human influence. We found that the increase of human-related disturbance resulted in less phylogenetic diversity and in the phylogenetic clustering of the woody vegetation and in lower aboveground biomass (AGB) values. As to the understory, disturbance was associated with a higher diversity, jointly with a higher phylogenetic dispersion. The most relevant disturbance predictors identified here were as follows: edge effect, proximity of cattle, minimum fragment age, and median patch size. Interestingly, AGB was efficiently predicted by the proportion of late successional species. We therefore recommend the use of AGB and abundance of late successional species as indicators of human disturbance on high Andean forests.

4.
Rev. peru. biol. (Impr.) ; 25(1): 29-34, ene.-mar. 2018. ilus
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1094297

RESUMO

Krameria lappacea (ratania) ha sido utilizada y reconocida como planta medicinal y tintura vegetal desde épocas precolombinas. En los últimos 15 años se han estudiado la biología, propagación y abundancia de ratania en Perú y desarrollado métodos que garanticen una recolección silvestre sostenible. El objetivo de este trabajo es investigar qué factores limitan la propagación natural y evaluar si una resiembra de semillas durante la recolección puede facilitar el establecimiento de plantas nuevas in situ. Al investigarse la germinación de las semillas y la propagación in situ pudo comprobarse mediante experimentos de invernadero que el entierro de las semillas es un factor limitante para la germinación de K. lappacea y que la tasa de germinación puede incrementarse significativamente (3 - 4x) al enterrar las semillas. Tanto la resiembra de las semillas en los hoyos realizados tras la cosecha, así como la resiembra más esparcida en parcelas seleccionadas, puede contribuir al reforzamiento de la regeneración natural. Las raíces secundarias que quedan en el suelo después de la cosecha forman un nuevo meristemo y dan lugar al desarrollo de nuevas plantas. El pre-tratamiento de las semillas (escarificación) no produce ningún efecto claro en el éxito de la germinación, sin embargo, esta práctica facilita la manipulación durante la resiembra, asegurando que únicamente semillas viables y completamente desarrolladas sean utilizadas posteriormente


Krameria lappacea (rhatany) is a well established medicinal and dye plant that is used since pre-Colombian times. In the last 15 years the biology, distribution and abundance of rhatany in Peru was investigated and methods for a sustainable wildcrafting were developed. The objective of this work was to investigate which factors limit the natural propagation and to explore whether the reseeding measures can contribute to the establishment of new plants in situ. Investigating the germination and in situ propagation, greenhouse trials showed that the seed burial is an important, limiting factor for the germination of K. lappacea und the germination rate can be increased (3-4x) by burying the seeds. Both the burial of the seeds during collection and re-sowing measures on selected lots can contribute to the rejuvenation of the population. Secondary roots, which are left in the ground during harvest, are showed to form new shoot meristems and develop into new plants. Pre-treatment (scarification) of the fruits does not clearly influence the germination success, but it facilitates the handling of the seeds during re-sowing and ensures the use of only fully developed, viable seeds

5.
Phytochemistry ; 96: 170-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24169378

RESUMO

Several species of the genus Urtica (especially Urtica dioica, Urticaceae), are used medicinally to treat a variety of ailments. To better understand the chemical diversity of the genus and to compare different accessions and different taxa of Urtica, 63 leaf samples representing a broad geographical, taxonomical and morphological diversity were evaluated under controlled conditions. A molecular phylogeny for all taxa investigated was prepared to compare phytochemical similarity with phylogenetic relatedness. Metabolites were analyzed via UPLC-PDA-MS and multivariate data analyses. In total, 43 metabolites were identified, with phenolic compounds and hydroxy fatty acids as the dominant substance groups. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) provides a first structured chemotaxonomy of the genus. The molecular data present a highly resolved phylogeny with well-supported clades and subclades. U. dioica is retrieved as both para- and polyphyletic. European members of the U. dioica group and the North American subspecies share a rather similar metabolite profile and were largely retrieved as one, nearly exclusive cluster by metabolite data. This latter cluster also includes - remotely related - Urtica urens, which is pharmaceutically used in the same way as U. dioica. However, most highly supported phylogenetic clades were not retrieved in the metabolite cluster analyses. Overall, metabolite profiles indicate considerable phytochemical diversity in the genus, which largely falls into a group characterized by high contents of hydroxy fatty acids (e.g., most Andean-American taxa) and another group characterized by high contents of phenolic acids (especially the U. dioica-clade). Anti-inflammatory in vitro COX1 enzyme inhibition assays suggest that bioactivity may be predicted by gross metabolic profiling in Urtica.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Ácidos Graxos/isolamento & purificação , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Lignanas/isolamento & purificação , Lignanas/farmacologia , Terpenos/isolamento & purificação , Terpenos/farmacologia , Urtica dioica/química , Anti-Inflamatórios/química , Cinamatos/química , Ácidos Graxos/química , Flavonoides/química , Lignanas/química , Estrutura Molecular , Filogenia , Folhas de Planta/química , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA