Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 102(2): 174-195, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29238848

RESUMO

Bone sarcomas are tumours belonging to the family of mesenchymal tumours and constitute a highly heterogeneous tumour group. The three main bone sarcomas are osteosarcoma, Ewing sarcoma and chondrosarcoma each subdivided in diverse histological entities. They are clinically characterised by a relatively high morbidity and mortality, especially in children and adolescents. Although these tumours are histologically, molecularly and genetically heterogeneous, they share a common involvement of the local microenvironment in their pathogenesis. This review gives a brief overview of their specificities and summarises the main therapeutic advances in the field of bone sarcoma.


Assuntos
Neoplasias Ósseas/etiologia , Sarcoma/etiologia , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/terapia , Feminino , Tumor de Células Gigantes do Osso/patologia , Humanos , Masculino , Sarcoma/diagnóstico , Sarcoma/tratamento farmacológico , Sarcoma/terapia , Microambiente Tumoral
2.
Int J Mol Sci ; 19(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261597

RESUMO

Breast cancer cells colonize the skeleton by homing to specific niches, but the involvement of osteoblasts in tumour cell seeding, colonization, and progression is unknown. We used an in vivo model to determine how increasing the number of cells of the osteoblast lineage with parathyroid hormone (PTH) modified subsequent skeletal colonization by breast cancer cells. BALB/c nude mice were injected for five consecutive days with PBS (control) or PTH and then injected with DiD-labelled breast cancer cells via the intra-cardiac route. Effects of PTH on the bone microenvironment and tumour cell colonization and growth was analyzed using bioluminescence imaging, two-photon microscopy, and histological analysis. PTH treatment caused a significant, transient increase in osteoblast numbers compared to control, whereas bone volume/structure in the tibia was unaffected. There were no differences in the number of tumour cells seeding to the tibias, or in the number of tumours in the hind legs, between the control and PTH group. However, animals pre-treated with PTH had a significantly higher number of tumour colonies distributed throughout skeletal sites outside the hind limbs. This is the first demonstration that PTH-induced stimulation of osteoblastic cells may result in alternative skeletal sites becoming available for breast cancer cell colonization.


Assuntos
Osso e Ossos/efeitos dos fármacos , Neoplasias da Mama/patologia , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Animais , Apoptose/efeitos dos fármacos , Osso e Ossos/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência por Excitação Multifotônica , Tíbia/efeitos dos fármacos , Tíbia/patologia , Transplante Heterólogo
3.
FASEB J ; 29(8): 3141-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25888599

RESUMO

This study aimed to identify subpopulations of prostate cancer cells that are responsible for the initiation of bone metastases. Using rapidly dividing human prostate cancer cell lines, we identified mitotically quiescent subpopulations (<1%), which we compared with the rapidly dividing populations for patterns of gene expression and for their ability to migrate to the skeletons of athymic mice. The study used 2-photon microscopy to map the presence/distribution of fluorescently labeled, quiescent cells and luciferase expression to determine the presence of growing bone metastases. We showed that the mitotically quiescent cells were very significantly more tumorigenic in forming bone metastases than fast-growing cells (55 vs. 15%) and had a unique gene expression profile. The quiescent cells were not uniquely stem cell like, with no expression of CD133 but had the same level expression of other putative prostate stem cell markers (CD44 and integrins α2/ß1), when compared to the rapidly proliferating population. In addition, mitotic quiescence was associated with very high levels of C-X-C chemokine receptor type 4 (CXCR4) production. Inhibition of CXCR4 activity altered the homing of quiescent tumor cells to bone. Our studies suggest that mitotic dormancy is a unique phenotype that facilitates tumor cell colonization of the skeleton in prostate cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/patologia , Mitose/fisiologia , Neoplasias da Próstata/patologia , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Neoplasias Ósseas/metabolismo , Glicoproteínas/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Cadeias alfa de Integrinas/metabolismo , Cadeias beta de Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/metabolismo , Fenótipo , Neoplasias da Próstata/metabolismo , Receptores CXCR4/metabolismo , Células Tumorais Cultivadas
4.
Int J Cancer ; 137(4): 968-77, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25603921

RESUMO

Dormant disseminated tumour cells can be detected in the bone marrow of breast cancer patients several years after resection of the primary tumour. The majority of these patients will remain asymptomatic, however, ∼ 15% will go on to develop overt bone metastases and this condition is currently incurable. The reason why these dormant cells are stimulated to proliferate and form bone tumours in some patients and not others remains to be elucidated. We have recently shown that in an in vivo model, increasing bone turnover by ovariectomy stimulated proliferation of disseminated tumour cells, resulting in formation of bone metastasis. We now show for the first time that osteoclast mediated mechanisms induce growth of tumours from dormant MDA-MB-231 cells disseminated in the bone. We also show that disruption of RANK-RANKL interactions following administration of OPG-Fc inhibits growth of these dormant tumour cells in vivo. Our data support early intervention with anti-resorptive therapy in a low-oestrogen environment to prevent development of bone metastases.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/patologia , Osteoprotegerina/administração & dosagem , Ovariectomia/efeitos adversos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/cirurgia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/imunologia , Camundongos , Osteoclastos , Osteoprotegerina/imunologia , Ligante RANK/metabolismo
6.
Breast Cancer Res ; 14(3): R86, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632416

RESUMO

INTRODUCTION: The majority of deaths from breast cancer are a result of metastases; however, little is understood about the genetic alterations underlying their onset. Genetic profiling has identified the adhesion molecule plakoglobin as being three-fold reduced in expression in primary breast tumors that have metastasized compared with nonmetastatic tumors. In this study, we demonstrate a functional role for plakoglobin in the shedding of tumor cells from the primary site into the circulation. METHODS: We investigated the effects of plakoglobin knockdown on breast cancer cell proliferation, migration, adhesion, and invasion in vitro and on tumor growth and intravasation in vivo. MCF7 and T47D cells were stably transfected with miRNA sequences targeting the plakoglobin gene, or scramble vector. Gene and protein expression was monitored by quantitative polymerase chain reaction (qPCR) and Western blot. Cell proliferation, adhesion, migration, and invasion were measured by cell counting, flow cytometry, and scratch and Boyden Chamber assays. For in vivo experiments, plakoglobin knockdown and control cells were inoculated into mammary fat pads of mice, and tumor growth, shedding of tumor cells into the bloodstream, and evidence of metastatic bone lesions were monitored with caliper measurement, flow cytometry, and microcomputed tomography (µCT), respectively. RESULTS: Plakoglobin and γ-catenin expression were reduced by more than 80% in all knockdown cell lines used but were unaltered after transfection with the scrambled sequence. Reduced plakoglobin resulted in significantly increased in MCF7 and T47D cell proliferation in vitro and in vivo, compared with control, with significantly more tumor cells being shed into the bloodstream of mice bearing plakoglobin knockdown tumors. In addition, plakoglobin knockdown cells showed a >250% increase in invasion through basement membrane and exhibited reduced cell-to-cell adhesion compared with control cells. CONCLUSION: Decreased plakoglobin expression increases the invasive behavior of breast cancer cells. This is the first demonstration of a functional role for plakoglobin/γ-catenin in the metastatic process, indicating that this molecule may represent a target for antimetastatic therapies.


Assuntos
Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Células Neoplásicas Circulantes , gama Catenina/metabolismo , Animais , Adesão Celular , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Interferência de RNA , RNA Interferente Pequeno , gama Catenina/genética
7.
Breast Cancer Res Treat ; 133(2): 523-36, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21956211

RESUMO

We have determined the effect of combining the chemotherapy agent doxorubicin and the anti-resorptive drug zoledronic acid on the early stages of spontaneous mammary tumour development using the immunocompetent PyMT mouse model that closely mimics human breast cancer development. 6-week-old PyMT mice were treated weekly for 6 weeks with PBS, 2 mg/kg doxorubicin, 100 µg/kg zoledronic acid or doxorubicin followed 24 h later by zoledronic acid (n = 15/group). Untreated, 6-week-old animals were used for comparison of tumour development. Tumour volume, apoptosis and angiogenesis were analysed on H&E, caspase 3, CD31 and CD34 stained histological sections. Proliferation was measured by BrdU incorporation and Ki67 staining and tumour macrophage infiltration assessed by F4/80 immunohistochemistry. Animals treated with doxorubicin followed by zoledronic acid did not develop palpable mammary tumours, whereas in all other treatment groups tumours progressed to late stage adenocarcinomas. Tumours from the combination treatment group were of comparable size to those in 6-week-old untreated animals, remaining pre-malignant with well-differentiated acinar arrangements and with tumour volume only reaching on average 26% of that in the PBS control group. Tumour cell apoptosis and proliferation was significantly reduced compared to control, single agent or untreated 6-week-old mice. Significantly fewer circulating tumour cells were present in animals following sequential treatment compared to all other groups. Combination treatment with doxorubicin followed by zoledronic acid inhibits development and progression of spontaneously occurring mammary tumours.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Conservadores da Densidade Óssea/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Difosfonatos/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Doxorrubicina/administração & dosagem , Feminino , Imidazóis/administração & dosagem , Imunocompetência , Macrófagos/efeitos dos fármacos , Masculino , Neoplasias Mamárias Experimentais/mortalidade , Neoplasias Mamárias Experimentais/patologia , Camundongos , Metástase Neoplásica/tratamento farmacológico , Estadiamento de Neoplasias , Neovascularização Patológica/tratamento farmacológico , Ácido Zoledrônico
8.
J Cell Mol Med ; 15(3): 501-13, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20015195

RESUMO

The anti-resorptive agent zoledronic acid inhibits key enzymes in the mevalonate pathway, disrupting post-translational modification and thereby correct protein localization and function. Inhibition of prenylation may also be responsible for the reported anti-tumour effects of zoledronic acid, but the specific molecular targets have not been identified. Cenp-F/mitosin, a kinetochore-associated protein involved in the correct separation of chromosomes during mitosis, has been shown to undergo post-translational prenylation and may therefore be a novel target contributing to the anti-tumour effects of zoledronic acid. We investigated whether zoledronic acid causes loss of Cenp-F from the kinetochore in breast cancer cells, to determine if the reported anti-tumour effects may be mediated by impairing correct chromosome separation. MDA-MB-436, MDA-MB-231 and MCF-7 breast cancer cells and MCF-10A non-malignant breast epithelial cells were treated with zoledronic acid in vitro, and the effect on Cenp-F localization was analysed by immunoflourescence microscopy. Zoledronic acid caused loss of Cenp-F from the kinetochore, accompanied by an increase in the number of cells in pro-, /prometa- and metaphase in all of the cancer cell lines. There was also a significant increase in the number of lagging chromosomes in mitotic cells. The effects of zoledronic acid could be reversed by inclusion of an intermediary of the mevalonate pathway, showing that the loss of Cenp-F from the kinetochore was caused by the inhibition of farnesylation. In contrast, no effect was seen on Cenp-F in non-malignant MCF-10A cells. This is the first report showing a specific effect of zoledronic acid on a protein involved in the regulation of chromosome segregation, identifying Cenp-F as a potential new molecular target for NBPs in tumour cells.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Difosfonatos/farmacologia , Imidazóis/farmacologia , Proteínas dos Microfilamentos/metabolismo , Conservadores da Densidade Óssea/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Segregação de Cromossomos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Microscopia de Fluorescência , Prenilação de Proteína/efeitos dos fármacos , Fatores de Tempo , Ácido Zoledrônico
9.
J Vasc Res ; 47(6): 481-93, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20431297

RESUMO

BACKGROUND/AIMS: The cytotoxic agent paclitaxel and the anti-resorptive drug zoledronic acid are used in the early and advanced breast cancer setting, respectively. Both agents have been demonstrated to have anti-tumour and anti-endothelial actions. Combining paclitaxel with zoledronic acid induces a synergistic increase in apoptotic breast cancer cell death in vitro, suggesting an increased anti-tumour effect in vivo, but any specific effects on the normal microvasculature and potential side-effects of this combination remain to be established. METHODS: The effects of zoledronic acid and paclitaxel were investigated, alone and in combination, on human microvascular endothelial cells in vitro, using functional assays including proliferation, migration, tubule formation and apoptosis. The in vivo effect of the drugs on the normal microvasculature was determined using the dorsal microcirculation chamber model. RESULTS/CONCLUSION: Zoledronic acid reduced human dermal microvascular endothelial cell (HuDMEC) proliferation, caused accumulation of cells in S phase, and inhibited migration, tube formation and Rap1a prenylation. Paclitaxel significantly inhibited tube formation and proliferation, and increased endothelial necrosis; the combination induced HuDMEC apoptosis and further enhanced the inhibition of tube formation and migration. The combination caused minimal effects on the normal microvasculature in vivo, suggesting that this potential therapeutic strategy is not associated with deleterious microvascular side-effects.


Assuntos
Antineoplásicos/farmacologia , Difosfonatos/farmacologia , Células Endoteliais/efeitos dos fármacos , Imidazóis/farmacologia , Microvasos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Paclitaxel/farmacologia , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Difosfonatos/toxicidade , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Imidazóis/toxicidade , Masculino , Camundongos , Camundongos Nus , Microvasos/metabolismo , Microvasos/patologia , Paclitaxel/toxicidade , Prenilação de Proteína , Fatores de Tempo , Ácido Zoledrônico , Proteínas rap1 de Ligação ao GTP/metabolismo
10.
EBioMedicine ; 53: 102704, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32151797

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary malignant bone tumour. Unfortunately, no new treatments are approved and over the last 30 years the survival rate remains only 30% at 5 years for poor responders justifying an urgent need of new therapies. The Mutt homolog 1 (MTH1) enzyme prevents incorporation of oxidized nucleotides into DNA and recently developed MTH1 inhibitors may offer therapeutic potential as MTH1 is overexpressed in various cancers. METHODS: The aim of this study was to evaluate the therapeutic benefits of targeting MTH1 with two chemical inhibitors, TH588 and TH1579 on human osteosarcoma cells. Preclinical efficacy of TH1579 was assessed in human osteosarcoma xenograft model on tumour growth and development of pulmonary metastases. FINDINGS: MTH1 is overexpressed in OS patients and tumour cell lines, compared to mesenchymal stem cells. In vitro, chemical inhibition of MTH1 by TH588 and TH1579 decreases OS cells viability, impairs their cell cycle and increases apoptosis in OS cells. TH1579 was confirmed to bind MTH1 by CETSA in OS model. Moreover, 90 mg/kg of TH1579 reduces in vivo tumour growth by 80.5% compared to non-treated group at day 48. This result was associated with the increase in 8-oxo-dG integration into tumour cells DNA and the increase of apoptosis. Additionally, TH1579 also reduces the number of pulmonary metastases. INTERPRETATION: All these results strongly provide a pre-clinical proof-of-principle that TH1579 could be a therapeutic option for patients with osteosarcoma. FUNDING: This study was supported by La Ligue Contre le Cancer, la SFCE and Enfants Cancers Santé.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Enzimas Reparadoras do DNA/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Pirimidinas/uso terapêutico , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Osteossarcoma/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Pirimidinas/farmacologia , Células Tumorais Cultivadas
11.
Drug Discov Today ; 24(3): 763-772, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30496853

RESUMO

The current main goal of diagnostic medicine is to detect crucial events in 'infinitely' small samples. The key question now is how to determine whether the rare cell events isolated and characterized from these samples reliably reflect the disease and heterogeneity of the tumor. In this review, we provide a short overview of the most recent methods developed for the isolation and characterization of rare cell events in clinical practice, with a specific focus on circulating tumor cells. We discuss the biological value to studying these cells at the single cell level and how these rare cell events can reflect tumor heterogeneity. The potential biomedical applications are also critically discussed in light of precision medicine.


Assuntos
Células Neoplásicas Circulantes , Animais , Humanos , Neoplasias/genética
12.
J Bone Oncol ; 17: 100244, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31236323

RESUMO

BACKGROUND: Bone metastasis is one of the most common complications of advanced breast cancer. During dissemination to bone, breast cancer cells locate in a putative 'metastatic niche', a microenvironment that regulates the colonisation, maintenance of tumour cell dormancy and subsequent tumour growth. The precise location and composition of the bone metastatic niche is not clearly defined. We have used in vivo models of early breast cancer dissemination to provide novel evidence that demonstrates overlap between endosteal, perivascular, HSC and the metastatic niche in bone. METHODS: Estrogen Receptor (ER) +ve and -ve breast cancer cells were labelled with membrane dyes Vybrant-DiD and Vybrant-CM-DiI and injected via different routes in BALBc/nude mice of different ages. Two-photon microscopy was used to detect and quantitate tumour cells and map their location within the bone microenvironment as well as their distance to the nearest bone surface compared to the nearest other tumour cell. To investigate whether the metastatic niche overlapped with the HSC niche, animals were pre-treated with the CXCR4 antagonist AMD3100 to mobilise hematopoietic (HSCs) prior to injection of breast cancer cells. RESULTS: Breast cancer cells displayed a characteristic pattern of homing in the long bones, with the majority of tumour cells seeded in the trabecular regions, regardless of the route of injection, cell-line characteristics (ER status) or animal age. Breast cancer cells located in close proximity to the nearest bone surface and the average distance between individual tumour cells was higher than their distance to bone. Mobilisation of HSCs from the niche to the circulation prior to injection of cell lines resulted in increased numbers of tumour cells disseminated in trabecular regions. CONCLUSION: Our data provide evidence that homing of breast cancer cells is independent of their ER status and that the breast cancer bone metastasis niche is located within the trabecular region of bone, an area rich in osteoblasts and microvessels. The increased number of breast cancer cells homing to bone after mobilisation of HSCs suggests that the HSC and the bone metastasis niche overlap.

13.
J Bone Oncol ; 12: 83-90, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30123735

RESUMO

Osteosarcoma is a rare primary bone tumor, which mainly affects children and adolescents and has a poor prognosis, especially for patients with metastatic disease. A poor therapeutic response to the conventional chemotherapy is observed with the development of lung metastases, highlighting the need for improving the current regimens and the identification of early markers of the recurrent and metastatic disease. Circulating Tumour Cells (CTCs) play a key role in the metastatic process and could be powerful biomarkers of the progressive disease. The present study aimed to isolate CTCs by using a pre-clinical model of human osteosarcoma and to monitor their kinetic of release and their modulation by ifosfamide. CTCs were detectable into the bloodstream before any palpable primary tumors. Ifosfamide increased CTCs count and in contrast decreased the number of lung tumor nodules. On established tumors, ifosfamide slowed down the tumour growth and did not modulate CTC count that could be explained by a release of cancer cells from the primary tumour with reduced properties for inducing lung metastases. This report highlights the biological interest of CTCs in osteosarcoma.

14.
Cancer Lett ; 430: 193-200, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29802930

RESUMO

Osteosarcoma (OS) is the most frequent paediatric bone cancer, responsible for 9% of all cancer-related deaths in children. In this paper, a new strategy based on delivering edelfosine (ET) in lipid nanoparticles (LN) was explored in order to target the primary tumour and eliminate metastases. The in vitro and in vivo efficacy of the free drug, drug loaded into lipid nanoparticles (ET-LN) and doxorubicin (DOX) against osteosarcoma (OS) cells was analysed. ET and ET-LN decreased the growth of OS cells in vitro in a time- and dose-dependent manner. Interestingly, the uptake of ET and ET-LN was lower when OS cells were pre-treated with DOX. In vivo studies revealed that ET and ET-LN slowed down the primary tumour growth in two OS models. However, the combination of both drugs showed no additional anti-tumour effect. Importantly, ET-LN successfully prevented the metastatic spread of OS cells from the primary tumour to the lungs. On the whole, ET-LN are a promising candidate for OS chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Osteossarcoma/tratamento farmacológico , Éteres Fosfolipídicos/administração & dosagem , Administração Oral , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos , Feminino , Humanos , Lipídeos/química , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Nanopartículas/química , Osteossarcoma/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Lett ; 386: 189-195, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894960

RESUMO

Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and in some cases metastasis. Recent published work demonstrates evidence of cancer stem cell phenotypes in osteosarcoma with links to drug resistance and tumorigenesis. In this review we will discuss the commonly used isolation techniques for cancer stem cells in osteosarcoma as well as the identified biochemical and molecular markers.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/patologia , Células-Tronco Neoplásicas/patologia , Osteossarcoma/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Separação Celular/métodos , Resistencia a Medicamentos Antineoplásicos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fenótipo
16.
Expert Opin Drug Discov ; 12(4): 379-389, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28277839

RESUMO

INTRODUCTION: Patients with metastatic cancer suffer the highest rate of cancer-related death, but existing animal models of metastasis have disadvantages that limit our ability to understand this process. The zebrafish is increasingly used for cancer modelling, particularly xenografting of human cancer cell lines, and drug discovery, and may provide novel scientific and therapeutic insights. However, this model system remains underexploited. Areas covered: The authors discuss the advantages and disadvantages of the zebrafish xenograft model for the study of cancer, metastasis and drug discovery. They summarise previous work investigating the metastatic cascade, such as tumour-induced angiogenesis, intravasation, extravasation, dissemination and homing, invasion at secondary sites, assessing metastatic potential and evaluation of cancer stem cells in zebrafish. Expert opinion: The practical advantages of zebrafish for basic biological study and drug discovery are indisputable. However, their ability to sufficiently reproduce and predict the behaviour of human cancer and metastasis remains unproven. For this to be resolved, novel mechanisms must to be discovered in zebrafish that are subsequently validated in humans, and for therapeutic interventions that modulate cancer favourably in zebrafish to successfully translate to human clinical studies. In the meantime, more work is required to establish the most informative methods in zebrafish.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Animais , Humanos , Metástase Neoplásica , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/patologia , Especificidade da Espécie , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Peixe-Zebra
17.
Eur J Cell Biol ; 96(2): 110-118, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28187910

RESUMO

Gap junctions are transmembrane structures that directly connect the cytoplasm of adjacent cells, making intercellular communications possible. It has been shown that the behaviour of several tumours - such as bone tumours - is related to gap junction intercellular communications (GJIC). Several methodologies are available for studying GJIC, based on measuring different parameters that are useful for multiple applications, such as the study of carcinogenesis for example. These methods nevertheless have several limitations. The present manuscript describes the setting up of a dielectrophoresis (DEP)-based lab-on-a-chip platform for the real-time study of Gap Junctional Intercellular Communication between osteosarcoma cells and the main cells accessible to their microenvironment. We conclude that using the DEParray technology for the GJIC assessment has several advantages comparing to current techniques. This methodology is less harmful for cells integrity; cells can be recovered after interaction to make further molecular analysis; it is possible to study GJIC in real time; we can promote cell interactions using up to five different populations. The setting up of this new methodology overcomes several difficulties to perform experiments for solving questions about GJIC process that we are not able to do with current technics.


Assuntos
Comunicação Celular/fisiologia , Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Junções Comunicantes/fisiologia , Neoplasias Ósseas/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteossarcoma/patologia , Imagem com Lapso de Tempo/métodos
18.
Expert Opin Investig Drugs ; 25(11): 1265-1280, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27633385

RESUMO

INTRODUCTION: Osteosarcomas are the main malignant primary bone tumours found in children and young adults. Conventional treatment is based on diagnosis and resection surgery, combined with polychemotherapy. This is a protocol that was established in the 1970s. Unfortunately, this therapeutic approach has reached a plateau of efficacy and the patient survival rate has not improved in the last four decades. New therapeutic approaches are thus required to improve the prognosis for osteosarcoma patients. Areas covered: From the databases available and published scientific literature, the present review gives an overview of the drugs currently in early clinical development for the treatment of osteosarcoma. For each drug, a short description is given of the relevant scientific data supporting its development. Expert opinion: Multidrug targeted approaches are set to emerge, given the heterogeneity of osteosarcoma subtypes and the multitude of therapeutic responses. The key role played by the microenvironment in the disease increases the number of therapeutic targets (such as macrophages or osteoclasts), as well as the master proteins that control cell proliferation or cell death. Ongoing phase I/II trials are important steps, not only for identifying new therapies with greater safety and efficacy, but also for better defining the role played by the microenvironment in the pathogenesis of osteosarcoma.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Criança , Desenho de Fármacos , Humanos , Terapia de Alvo Molecular , Osteossarcoma/patologia , Prognóstico , Microambiente Tumoral , Adulto Jovem
19.
Front Oncol ; 6: 202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656422

RESUMO

Sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin, many of which have a propensity to develop distant metastases. Cancer cells that have escaped from the primary tumor are able to invade into surrounding tissues, to intravasate into the bloodstream to become circulating tumor cells (CTCs), and are responsible for the generation of distant metastases. Due to the rarity of these tumors and the absence of specific markers expressed by sarcoma tumor cells, the characterization of sarcoma CTCs has to date been relatively limited. Current techniques for isolating sarcoma CTCs are based on size criteria, the identification of circulating cells that express either common mesenchymal markers, sarcoma-specific markers, such as CD99, CD81, or PAX3, and chromosomal translocations found in certain sarcoma subtypes, such as EWS-FLI1 in Ewing's sarcoma, detection of osteoblast-related genes, or measurement of the activity of specific metabolic enzymes. Further studies are needed to improve the isolation and characterization of sarcoma CTCs, to demonstrate their clinical significance as predictive and/or prognostic biomarkers, and to utilize CTCs as a tool for investigating the metastatic process in sarcoma and to identify novel therapeutic targets. The present review provides a short overview of the most recent literature on CTCs in sarcoma.

20.
J Exp Clin Cancer Res ; 34: 124, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26480944

RESUMO

BACKGROUND: While both preclinical and clinical studies suggest that the frequency of growing skeletal metastases is elevated in individuals with higher bone turnover, it is unclear whether this is a result of increased numbers of tumour cells arriving in active sites or of higher numbers of tumour cells being induced to divide by the bone micro-environment. Here we have investigated how the differences in bone turnover affect seeding of tumour cells and/or development of overt osteolytic bone metastasis using in vivo models of hormone-independent breast and prostate cancer. METHODS: Cohorts of 6 (young) and 16 (mature)-week old BALB/c nude mice were culled 1, 7 and 21 days after received intracardiac injection of luciferase expressing human prostate (PC3) or breast cancer (MDA-MB-231) cell lines labelled with a fluorescent cell membrane dye (Vybrant DiD). The presence of growing bone metastases was determined by bioluminescence using an in vivo imaging system (IVIS) and followed by anatomical confirmation of tumour metastatic sites post mortem, while the presence of individual fluorescently labelled tumour cells was evaluated using two-photon microscopy ex vivo. The bone remodelling activities were compared between young and mature naïve mice (both male and female) using micro-CT analysis, ELISA and bone histomorphometry. RESULTS: Both prostate and breast cancer cells generated higher numbers of overt skeletal lesions in young mice (~80%) than in mature mice (~20%). Although mature mice presented with fewer overt bone metastases, the number of tumour cells arriving/colonizing in the tibias was comparable between young and mature animals. Young naïve mice had lower bone volume but higher bone formation and resorption activities compared to mature animals. CONCLUSIONS: Our studies suggest that higher frequencies of growing osteolytic skeletal metastases in these models are linked to increased bone turnover and not to the initial number of tumour cells entering the bone microenvironment.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/patologia , Osteólise/patologia , Neoplasias da Próstata/patologia , Animais , Neoplasias Ósseas/secundário , Contagem de Células , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA