Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 30(15): 5242-52, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20392947

RESUMO

Ischemic preconditioning is a phenomenon in which low-level stressful stimuli upregulate endogenous defensive programs, resulting in subsequent resistance to otherwise lethal injuries. We previously observed that signal transduction systems typically associated with neurodegeneration such as caspase activation are requisite events for the expression of tolerance and induction of HSP70. In this work, we sought to determine the extent and duration of oxidative and energetic dysfunction as well as the role of effector kinases on metabolic function in preconditioned cells. Using an in vitro neuronal culture model, we observed a robust increase in Raf and p66(Shc) activation within 1 h of preconditioning. Total ATP content decreased by 25% 3 h after preconditioning but returned to baseline by 24 h. Use of a free radical spin trap or p66(shc) inhibitor increased ATP content whereas a Raf inhibitor had no effect. Phosphorylated p66(shc) rapidly relocalized to the mitochondria and in the absence of activated p66(shc), autophagic processing increased. The constitutively expressed chaperone HSC70 relocalized to autophagosomes. Preconditioned cells experience significant total oxidative stress measured by F(2)-isoprostanes and neuronal stress evaluated by F(4)-neuroprostane measurement. Neuroprostane levels were enhanced in the presence of Shc inhibitors. Finally, we found that inhibiting either p66(shc) or Raf blocked neuroprotection afforded by preconditioning as well as upregulation of HSP70, suggesting both kinases are critical for preconditioning but function in fundamentally different ways. This is the first work to demonstrate the essential role of p66(shc) in mediating requisite mitochondrial and energetic compensation after preconditioning and suggests a mechanism by which protein and organelle damage mediated by ROS can increase HSP70.


Assuntos
Precondicionamento Isquêmico , Neurônios/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Núcleo Celular/fisiologia , Células Cultivadas , Ácidos Docosa-Hexaenoicos/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Isoprostanos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras da Sinalização Shc/antagonistas & inibidores , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Fatores de Tempo , Quinases raf/antagonistas & inibidores , Quinases raf/metabolismo
2.
ACS Chem Neurosci ; 3(7): 510-8, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22860220

RESUMO

Metabolic adaptation to stress is a crucial yet poorly understood phenomenon, particularly in the central nervous system (CNS). The ability to identify essential metabolic events which predict neuronal fate in response to injury is critical to developing predictive markers of outcome, for interpreting CNS spectroscopic imaging, and for providing a richer understanding of the relevance of clinical indices of stress which are routinely collected. In this work, real-time multianalyte microphysiometry was used to dynamically assess multiple markers of aerobic and anaerobic respiration through simultaneous electrochemical measurement of extracellular glucose, lactate, oxygen, and acid. Pure neuronal cultures and mixed cultures of neurons and glia were compared following a 90 min exposure to aglycemia. This stress was cytotoxic to neurons yet resulted in no appreciable increase in cell death in age-matched mixed cultures. The metabolic profile of the cultures was similar in that aglycemia resulted in decreases in extracellular acidification and lactate release in both pure neurons and mixed cultures. However, oxygen consumption was only diminished in the neuron enriched cultures. The differences became more pronounced when cells were returned to glucose-containing media upon which extracellular acidification and oxygen consumption never returned to baseline in cells fated to die. Taken together, these data suggest that lactate release is not predictive of neuronal survival. Moreover, they reveal a previously unappreciated relationship of astrocytes in maintaining oxygen uptake and a correlation between metabolic recovery of neurons and extracellular acidification.


Assuntos
Acidose/metabolismo , Técnicas de Cultura de Células/métodos , Espaço Extracelular/metabolismo , Redes e Vias Metabólicas/fisiologia , Neurônios/metabolismo , Animais , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Neuroglia/metabolismo , Consumo de Oxigênio/fisiologia , Ratos , Ratos Sprague-Dawley
3.
Autophagy ; 6(7): 948-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20724835

RESUMO

Stroke is the leading cause of adult disability in the U.S. and is now recognized as a global epidemic. There are currently no FDA-approved drugs to block the cell death that results from oxygen and glucose deprivation. This void in clinical medicine has sparked an intense interest in understanding endogenous cellular protective pathways that might be exploited for therapeutic development. The work highlighted here describes the critical role between redox tone and energetic stress signaling in mediating mitophagy and determining neuronal cell fate following acute oxygen glucose deprivation.


Assuntos
Autofagia/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Oxirredução , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Adulto , Células Cultivadas , Humanos , Precondicionamento Isquêmico , Neurônios/citologia , Proteínas Quinases/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Transdução de Sinais/fisiologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA