Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(14): 3689-3701.e22, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139175

RESUMO

The cholesterol-sensing protein Scap induces cholesterol synthesis by transporting membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi apparatus for proteolytic activation. Transport requires interaction between Scap's two ER luminal loops (L1 and L7), which flank an intramembrane sterol-sensing domain (SSD). Cholesterol inhibits Scap transport by binding to L1, which triggers Scap's binding to Insig, an ER retention protein. Here we used cryoelectron microscopy (cryo-EM) to elucidate two structures of full-length chicken Scap: (1) a wild-type free of Insigs and (2) mutant Scap bound to chicken Insig without cholesterol. Strikingly, L1 and L7 intertwine tightly to form a globular domain that acts as a luminal platform connecting the SSD to the rest of Scap. In the presence of Insig, this platform undergoes a large rotation accompanied by rearrangement of Scap's transmembrane helices. We postulate that this conformational change halts Scap transport of SREBPs and inhibits cholesterol synthesis.


Assuntos
Colesterol/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Galinhas , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
2.
Annu Rev Biochem ; 87: 783-807, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28841344

RESUMO

Scap is a polytopic membrane protein that functions as a molecular machine to control the cholesterol content of membranes in mammalian cells. In the 21 years since our laboratory discovered Scap, we have learned how it binds sterol regulatory element-binding proteins (SREBPs) and transports them from the endoplasmic reticulum (ER) to the Golgi for proteolytic processing. Proteolysis releases the SREBP transcription factor domains, which enter the nucleus to promote cholesterol synthesis and uptake. When cholesterol in ER membranes exceeds a threshold, the sterol binds to Scap, triggering several conformational changes that prevent the Scap-SREBP complex from leaving the ER. As a result, SREBPs are no longer processed, cholesterol synthesis and uptake are repressed, and cholesterol homeostasis is restored. This review focuses on the four domains of Scap that undergo concerted conformational changes in response to cholesterol binding. The data provide a molecular mechanism for the control of lipids in cell membranes.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Animais , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Proteólise , Receptores de LDL/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
3.
Cell ; 161(1): 161-172, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25815993

RESUMO

One-fourth of all deaths in industrialized countries result from coronary heart disease. A century of research has revealed the essential causative agent: cholesterol-carrying low-density lipoprotein (LDL). LDL is controlled by specific receptors (LDLRs) in liver that remove it from blood. Mutations that eliminate LDLRs raise LDL and cause heart attacks in childhood, whereas mutations that raise LDLRs reduce LDL and diminish heart attacks. If we are to eliminate coronary disease, lowering LDL should be the primary goal. Effective means to achieve this goal are currently available. The key questions are: who to treat, when to treat, and how long to treat.


Assuntos
Colesterol/metabolismo , Vasos Coronários/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Vasos Coronários/metabolismo , Gorduras na Dieta/metabolismo , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Receptores de LDL/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(32): e2208855119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914126

RESUMO

Wild-type (WT) mice maintain viable levels of blood glucose even when adipose stores are depleted by 6 d of 60% calorie restriction followed by a 23-h fast (hereafter designated as "starved" mice). Survival depends on ghrelin, an octanoylated peptide hormone. Mice that lack ghrelin suffer lethal hypoglycemia when subjected to the same starvation regimen. Ghrelin is known to stimulate secretion of growth hormone (GH), which in turn stimulates secretion of IGF-1 (insulin-like growth factor-1). In the current study, we found that starved ghrelin-deficient mice had a 90% reduction in plasma IGF-1 when compared with starved WT mice. Injection of IGF-1 in starved ghrelin-deficient mice caused a twofold increase in glucose production and raised blood glucose to levels seen in starved WT mice. Increased glucose production was accompanied by increases in plasma glycerol, fatty acids and ketone bodies, and hepatic triglycerides. All of these increases were abolished when the mice were treated with atglistatin, an inhibitor of adipose tissue triglyceride lipase. We conclude that IGF-1 stimulates adipose tissue lipolysis in starved mice and that this lipolysis supplies energy and substrates that restore hepatic gluconeogenesis. This action of IGF-1 in starved mice is in contrast to its known action in inhibiting adipose tissue lipase in fed mice. Surprisingly, the ghrelin-dependent maintenance of plasma IGF-1 in starved mice was not mediated by GH. Direct injection of GH into starved ghrelin-deficient mice failed to increase plasma IGF-1. These data call attention to an unsuspected role of IGF-1 in the adaptation to starvation.


Assuntos
Glicemia , Fator de Crescimento Insulin-Like I , Inanição , Adaptação Fisiológica , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Ácidos Graxos/sangue , Grelina/metabolismo , Gluconeogênese , Glicerol/sangue , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/metabolismo , Corpos Cetônicos/sangue , Lipase/antagonistas & inibidores , Lipase/metabolismo , Lipólise , Fígado/metabolismo , Camundongos , Compostos de Fenilureia/farmacologia , Inanição/sangue , Inanição/metabolismo , Triglicerídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992143

RESUMO

Low-density lipoprotein (LDL) delivers cholesterol to mammalian cells through receptor-mediated endocytosis. The LDL cholesterol is liberated in lysosomes and transported to the plasma membrane (PM) and from there to the endoplasmic reticulum (ER). Excess ER cholesterol is esterified with a fatty acid for storage as cholesteryl esters. Recently, we showed that PM-to-ER transport of LDL cholesterol requires phosphatidylserine (PS). Others showed that PM-to-ER transport of cholesterol derived from other sources requires Asters (also called GRAMD1s), a family of three ER proteins that bridge between the ER and PM by binding to PS. Here, we use a cholesterol esterification assay and other measures of ER cholesterol delivery to demonstrate that Asters participate in PM-to-ER transport of LDL cholesterol in Chinese hamster ovary cells. Knockout of the gene encoding PTDSS1, the major PS-synthesizing enzyme, lowered LDL-stimulated cholesterol esterification by 85%, whereas knockout of all three Aster genes lowered esterification by 65%. The reduction was even greater (94%) when the genes encoding PTDSS1 and the three Asters were knocked out simultaneously. We conclude that Asters participate in LDL cholesterol delivery from PM to ER, and their action depends in large part, but not exclusively, on PS. The data also indicate that PS participates in another delivery pathway, so far undefined, that is independent of Asters.


Assuntos
LDL-Colesterol/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Animais , Transporte Biológico , Células CHO , Membrana Celular/metabolismo , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Cricetinae , Cricetulus , Endocitose , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo
6.
Cell ; 137(7): 1213-24, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19563754

RESUMO

LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3beta-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3beta-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/metabolismo , Modelos Moleculares , Mutagênese , Proteína C1 de Niemann-Pick , Estrutura Terciária de Proteína
7.
Cell ; 132(3): 387-96, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18267071

RESUMO

Ghrelin is a 28 amino acid, appetite-stimulating peptide hormone secreted by the food-deprived stomach. Serine-3 of ghrelin is acylated with an eight-carbon fatty acid, octanoate, which is required for its endocrine actions. Here, we identify GOAT (Ghrelin O-Acyltransferase), a polytopic membrane-bound enzyme that attaches octanoate to serine-3 of ghrelin. Analysis of the mouse genome revealed that GOAT belongs to a family of 16 hydrophobic membrane-bound acyltransferases that includes Porcupine, which attaches long-chain fatty acids to Wnt proteins. GOAT is the only member of this family that octanoylates ghrelin when coexpressed in cultured endocrine cell lines with prepro-ghrelin. GOAT activity requires catalytic asparagine and histidine residues that are conserved in this family. Consistent with its function, GOAT mRNA is largely restricted to stomach and intestine, the major ghrelin-secreting tissues. Identification of GOAT will facilitate the search for inhibitors that reduce appetite and diminish obesity in humans.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Caprilatos/metabolismo , Grelina/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Perfilação da Expressão Gênica , Genoma , Humanos , Proteínas de Membrana , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Alinhamento de Sequência
8.
Proc Natl Acad Sci U S A ; 117(31): 18521-18529, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690708

RESUMO

Animal cells acquire cholesterol from receptor-mediated uptake of low-density lipoprotein (LDL), which releases cholesterol in lysosomes. The cholesterol moves to the endoplasmic reticulum (ER), where it inhibits production of LDL receptors, completing a feedback loop. Here we performed a CRISPR-Cas9 screen in human SV589 cells for genes required for LDL-derived cholesterol to reach the ER. We identified the gene encoding PTDSS1, an enzyme that synthesizes phosphatidylserine (PS), a phospholipid constituent of the inner layer of the plasma membrane (PM). In PTDSS1-deficient cells where PS is low, LDL cholesterol leaves lysosomes but fails to reach the ER, instead accumulating in the PM. The addition of PS restores cholesterol transport to the ER. We conclude that LDL cholesterol normally moves from lysosomes to the PM. When the PM cholesterol exceeds a threshold, excess cholesterol moves to the ER in a process requiring PS. In the ER, excess cholesterol acts to reduce cholesterol uptake, preventing toxic cholesterol accumulation. These studies reveal that one lipid-PS-controls the movement of another lipid-cholesterol-between cell membranes. We relate these findings to recent evidence indicating that PM-to-ER cholesterol transport is mediated by GRAMD1/Aster proteins that bind PS and cholesterol.


Assuntos
Membrana Celular/metabolismo , LDL-Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Fosfatidilserinas/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Colesterol/metabolismo , Humanos
9.
J Opt Soc Am A Opt Image Sci Vis ; 39(6): B21-B27, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215524

RESUMO

There are many efforts to employ consumer-grade cameras for home-based health and wellness monitoring. Such applications rely on users to capture images for analysis using their personal cameras in a home environment. When color is a primary feature for diagnostic algorithms, the camera requires calibration to ensure accurate color measurements. Given the importance of these diagnostic tests for the users' health and well-being, it is important to understand the conditions in which color calibration may fail. To this end, we analyzed a wide range of camera sensors and environmental lighting to determine (1) how often color calibration failure is likely to occur and (2) the underlying reasons for failure. Our analysis shows that it is rare to encounter a camera sensor and lighting condition combination that results in color imaging failure. Moreover, when color imaging does fail, the cause is almost always attributed to spectral poor environmental lighting and not the camera sensor. We believe this finding is useful for scientists and engineers developing color-based applications for use with consumer-grade cameras.


Assuntos
Diagnóstico por Imagem , Iluminação , Calibragem , Cor
10.
Proc Natl Acad Sci U S A ; 116(15): 7449-7454, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910968

RESUMO

When mice are subjected to 60% calorie restriction for several days, they lose nearly all of their body fat. Although the animals lack energy stores, their livers produce enough glucose to maintain blood glucose at viable levels even after a 23-hour fast. This adaptation is mediated by a marked increase in plasma growth hormone (GH), which is elicited by an increase in plasma ghrelin, a GH secretagogue. In the absence of ghrelin, calorie-restricted mice develop hypoglycemia, owing to diminished glucose production. To determine the site of GH action, in the current study we used CRISPR/Cas9 and Cre recombinase technology to produce mice that lack GH receptors selectively in liver (L-Ghr-/- mice) or in adipose tissue (Fat-Ghr-/- mice). When subjected to calorie restriction and then fasted for 23 hours, the L-Ghr-/- mice, but not the Fat-Ghr-/- mice, developed hypoglycemia. The fall in blood glucose in L-Ghr-/- mice was correlated with a profound drop in hepatic triglycerides. Hypoglycemia was prevented by injection of lactate or octanoate, two sources of energy to support gluconeogenesis. Electron microscopy revealed extensive autophagy in livers of calorie-restricted control mice but not in L-Ghr-/- mice. We conclude that GH acts through its receptor in the liver to activate autophagy, preserve triglycerides, enhance gluconeogenesis, and prevent hypoglycemia in calorie-restricted mice, a model of famine.


Assuntos
Autofagia , Glicemia/metabolismo , Restrição Calórica , Hormônio do Crescimento/sangue , Hipoglicemia/sangue , Fígado/metabolismo , Inanição/sangue , Animais , Glicemia/genética , Doença Crônica , Modelos Animais de Doenças , Hormônio do Crescimento/genética , Hipoglicemia/genética , Fígado/patologia , Camundongos , Camundongos Knockout , Inanição/genética , Inanição/patologia
11.
Proc Natl Acad Sci U S A ; 114(1): 89-94, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994139

RESUMO

Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.


Assuntos
Transporte Biológico/genética , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Triazóis/farmacologia , Androstenos/farmacologia , Animais , Antifúngicos/farmacologia , Sítios de Ligação/genética , Células CHO , Linhagem Celular , Cricetulus , Endocitose/fisiologia , Itraconazol/farmacologia , Cetoconazol/farmacologia , Ligação Proteica/fisiologia , Domínios Proteicos/genética
12.
J Opt Soc Am A Opt Image Sci Vis ; 36(1): 71-78, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645340

RESUMO

Illumination estimation is the key routine in a camera's onboard auto-white-balance (AWB) function. Illumination estimation algorithms estimate the color of the scene's illumination from an image in the form of an R, G, B vector in the sensor's raw-RGB color space. While learning-based methods have demonstrated impressive performance for illumination estimation, cameras still rely on simple statistical-based algorithms that are less accurate but capable of executing quickly on the camera's hardware. An effective strategy to improve the accuracy of these fast statistical-based algorithms is to apply a post-estimate bias-correction function to transform the estimated R, G, B vector such that it lies closer to the correct solution. Recent work by Finlayson [Interface Focus8, 20180008 (2018)2042-889810.1098/rsfs.2018.0008] showed that a bias-correction function can be formulated as a projective transform because the magnitude of the R, G, B illumination vector does not matter to the AWB procedure. This paper builds on this finding and shows that further improvements can be obtained by using an as-projective-as-possible (APAP) projective transform that locally adapts the projective transform to the input R, G, B vector. We demonstrate the effectiveness of the proposed APAP bias correction on several well-known statistical illumination estimation methods. We also describe a fast lookup method that allows the APAP transform to be performed with only a few lookup operations.

13.
Proc Natl Acad Sci U S A ; 113(29): 8182-7, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382175

RESUMO

Insulin increases lipid synthesis in liver by activating transcription of the gene encoding sterol regulatory element-binding protein-1c (SREBP-1c). SREBP-1c activates the transcription of all genes necessary for fatty acid synthesis. Insulin induction of SREBP-1c requires LXRα, a nuclear receptor. Transcription of SREBP-1c also requires transcription factor C/EBPß, but a connection between LXRα and C/EBPß has not been made. Here we show that LXRα and C/EBPß form a complex that can be immunoprecipitated from rat liver nuclei. Chromatin immunoprecipitation assays showed that the LXRα-C/EBPß complex binds to the SREBP-1c promoter in a region that contains two binding sites for LXRα and is known to be required for insulin induction. Knockdown of C/EBPß in fresh rat hepatocytes or mouse livers in vivo reduces the ability of insulin to increase SREBP-1c mRNA. The LXRα-C/EBPß complex is bound to the SREBP-1c promoter in the absence or presence of insulin, indicating that insulin acts not by increasing the formation of this complex, but rather by activating it.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Insulina/farmacologia , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
14.
J Biol Chem ; 292(21): 8729-8737, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28377508

RESUMO

Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity.


Assuntos
Colesterol/biossíntese , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Relação Estrutura-Atividade , Animais , Células CHO , Células COS , Chlorocebus aethiops , Colesterol/química , Colesterol/genética , Cricetinae , Cricetulus , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Complexo de Golgi/química , Complexo de Golgi/genética , Humanos , Membranas Intracelulares/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína
15.
Int J Comput Vis ; 126(6): 637-650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258243

RESUMO

Most camera images are saved as 8-bit standard RGB (sRGB) compressed JPEGs. Even when JPEG compression is set to its highest quality, the encoded sRGB image has been significantly processed in terms of color and tone manipulation. This makes sRGB-JPEG images undesirable for many computer vision tasks that assume a direct relationship between pixel values and incoming light. For such applications, the RAW image format is preferred, as RAW represents a minimally processed, sensor-specific RGB image that is linear with respect to scene radiance. The drawback with RAW images, however, is that they require large amounts of storage and are not well-supported by many imaging applications. To address this issue, we present a method to encode the necessary data within an sRGB-JPEG image to reconstruct a high-quality RAW image. Our approach requires no calibration of the camera's colorimetric properties and can reconstruct the original RAW to within 0.5% error with a small memory overhead for the additional data (e.g., 128 KB). More importantly, our output is a fully self-contained 100% compliant sRGB-JPEG file that can be used as-is, not affecting any existing image workflow-the RAW image data can be extracted when needed, or ignored otherwise. We detail our approach and show its effectiveness against competing strategies.

16.
Proc Natl Acad Sci U S A ; 112(4): 1226-31, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583513

RESUMO

Plasma growth hormone (GH) and hepatic autophagy each have been reported to protect against hypoglycemia in the fasted state, but previous data have not linked the two. Here we demonstrate a connection using a mouse model of fasting in a fat-depleted state. Mice were subjected to 1 wk of 60% calorie restriction, causing them to lose nearly all body fat. They were then fasted for 23 h. During fasting, WT mice developed massive increases in plasma GH and a concomitant increase in hepatic autophagy, allowing them to maintain viable levels of blood glucose. In contrast, lethal hypoglycemia occurred in mice deficient in the GH secretagogue ghrelin as a result of knockout of the gene encoding ghrelin O-acyltransferase (GOAT), which catalyzes a required acylation of the peptide. Fasting fat-depleted Goat(-/-) mice showed a blunted increase in GH and a marked decrease in hepatic autophagy. Restoration of GH by infusion during the week of calorie restriction maintained autophagy in the Goat(-/-) mice and prevented lethal hypoglycemia. Acute injections of GH after 7 d of calorie restriction also restored hepatic autophagy, but failed to increase blood glucose, perhaps owing to ATP deficiency in the liver. These data indicate that GH stimulation of autophagy is necessary over the long term, but not sufficient over the short term to maintain blood glucose levels in fasted, fat-depleted mice.


Assuntos
Autofagia , Glicemia/metabolismo , Restrição Calórica , Jejum/sangue , Grelina , Hipoglicemia , Fígado/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/genética , Grelina/deficiência , Grelina/farmacologia , Hipoglicemia/sangue , Hipoglicemia/tratamento farmacológico , Hipoglicemia/genética , Hipoglicemia/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout
17.
J Biol Chem ; 291(24): 12888-12896, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27068746

RESUMO

Cholesterol homeostasis is mediated by Scap, a polytopic endoplasmic reticulum (ER) protein that transports sterol regulatory element-binding proteins from the ER to Golgi, where they are processed to forms that activate cholesterol synthesis. Scap has eight transmembrane helices and two large luminal loops, designated Loop1 and Loop7. We earlier provided indirect evidence that Loop1 binds to Loop7, allowing Scap to bind COPII proteins for transport in coated vesicles. When ER cholesterol rises, it binds to Loop1. We hypothesized that this causes dissociation from Loop7, abrogating COPII binding. Here we demonstrate direct binding of the two loops when expressed as isolated fragments or as a fusion protein. Expressed alone, Loop1 remained intracellular and membrane-bound. When Loop7 was co-expressed, it bound to Loop1, and the soluble complex was secreted. A Loop1-Loop7 fusion protein was also secreted, and the two loops remained bound when the linker between them was cleaved by a protease. Point mutations that disrupt the Loop1-Loop7 interaction prevented secretion of the Loop1-Loop7 fusion protein. These data provide direct documentation of intramolecular Loop1-Loop7 binding, a central event in cholesterol homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Domínios Proteicos , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Animais , Células CHO , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Colesterol/metabolismo , Cricetinae , Cricetulus , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Homeostase , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Células Sf9 , Spodoptera , Proteínas de Transporte Vesicular/metabolismo
18.
AJR Am J Roentgenol ; 209(5): 1093-1102, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28858545

RESUMO

OBJECTIVE: This article reviews the normal anatomy of the extensor tendons of the wrist as well as the clinical presentation and MRI appearances of common tendon abnormalities, such as tears, tenosynovitis, intersection syndromes, and associated or predisposing osseous findings. Treatment options are also discussed. CONCLUSION: We review the anatomy and normal MRI appearance of the clinically important dorsal extensor tendons of the wrist, in addition to the spectrum of abnormalities associated with these tendons.


Assuntos
Imageamento por Ressonância Magnética , Tendinopatia/diagnóstico por imagem , Tendões/diagnóstico por imagem , Articulação do Punho/diagnóstico por imagem , Humanos
19.
Ecology ; 97(8): 1897-1904, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27859199

RESUMO

Mass mortality of the sea urchin Diadema antillarum due to disease outbreaks in 1983 and 1991 decimated populations in the Florida Keys, and they have yet to recover. Here, we use a coupled advection-diffusion and fertilization-kinetics model to test the hypothesis that these populations are fertilization limited. We found that fertilization success was ≥ 96% prior to the first disease outbreak, decreased substantially following recurrent disease to 3%, and has since remained low. By investigating the combined effects of physical factors (population spatial extent and current velocity) and sea urchin behavior (aggregation) on density-dependent fertilization success, we show that fertilization success at a given density increases with increasing population spatial extent and decreasing current velocity, and is greater under simulated aggregation behavior of D. antillarum. However, at present population densities, the increase in fertilization success due to aggregation is < 1%, even under the most favorable physical conditions. These results indicate that populations are severely fertilization limited, and that Allee effects at low population density will continue to limit recovery. Our results can serve as a practical guide to managers in the development of coral reef restoration strategies, including the design of a D. antillarum restocking program to obtain reproductively viable populations.


Assuntos
Recifes de Corais , Ouriços-do-Mar/fisiologia , Animais , Antozoários , Ecossistema , Monitoramento Ambiental , Fertilização , Florida , Densidade Demográfica , Reprodução
20.
Proc Natl Acad Sci U S A ; 110(26): 10580-5, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754385

RESUMO

Animal cells strictly control the distribution of cholesterol in their organelle membranes. This regulation requires an efficient machinery to transport insoluble cholesterol between organelles. In the present study, we generate an (125)I-labeled mutant version of Perfringolysin O (PFO), a cholesterol-binding protein, and use it to measure cholesterol in the plasma membrane of intact cells. We also purify plasma membranes from the same cells, which allows us to directly relate cholesterol concentration to (125)I-PFO binding. We show that cholesterol is organized in the plasma membrane in a manner that makes it inaccessible to PFO until its concentration exceeds a threshold of 35 mol% of total lipids. This 35% threshold is in striking contrast to the 5% threshold previously found for PFO binding to endoplasmic reticulum membranes. The (125)I-PFO probe also proved useful in monitoring the movement of LDL-derived cholesterol from lysosomes to plasma membranes. Using three different mutant cell lines, we show that this transport requires receptor-mediated uptake of LDL, hydrolysis of LDL-cholesteryl esters in lysosomes, and transfer of the liberated cholesterol to the plasma membrane.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Colesterol/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Sondas Moleculares/genética , Substituição de Aminoácidos/genética , Animais , Transporte Biológico Ativo , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Radioisótopos do Iodo , Sondas Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA