Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(45): e2210299119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322762

RESUMO

Ecologically beneficial traits in bacteria are encoded by intrinsic and horizontally acquired genes. However, such traits are not universal, and the highly mosaic nature of bacterial genomes requires control at the transcriptional level to drive these processes. It has emerged that regulatory flexibility is widespread in the Escherichia coli species, whereby preexisting transcription factors can acquire new and unrelated roles in regulating beneficial traits. DsdC is the regulator of D-serine tolerance in E. coli, is essential for D-serine catabolism, and is often encoded by two copies in neonatal meningitis-associated E. coli (NMEC). Here, we reveal that DsdC is a global regulator of transcription in NMEC and does not require D-serine for the control of novel beneficial traits. We show that DsdC binds the chromosome in an unusual manner, with many binding sites arranged in clusters spanning entire operons and within gene coding sequences, such as neuO. Importantly, we identify neuO as the most significantly down-regulated gene in a strain deleted for both dsdC copies, in both the presence and absence of D-serine. NeuO is prophage encoded in several NMEC K1 isolates and mediates capsule O-acetylation but has no effect on attachment to or invasion of human brain endothelial cells. Instead, we demonstrate that NeuO provides resistance against K1 bacteriophage attack and that this critical function is regulated by DsdC. This work highlights how a horizontally acquired enzyme that functions in cell-surface modulation can be controlled by an intrinsic regulator to provide a key ecological benefit to an E. coli pathotype.


Assuntos
Bacteriófagos , Proteínas de Escherichia coli , Recém-Nascido , Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bacteriófagos/metabolismo , Células Endoteliais/metabolismo , Serina/metabolismo
2.
J Am Chem Soc ; 145(25): 13570-13580, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318835

RESUMO

Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes' ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry.


Assuntos
DNA Cruciforme , Ácidos Nucleicos , Humanos , Conformação de Ácido Nucleico , DNA/química , Sítios de Ligação
3.
PLoS Pathog ; 17(10): e1009992, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662348

RESUMO

Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5' region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Infecções Meningocócicas/genética , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidade , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
4.
J Bacteriol ; 204(3): e0060121, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35191762

RESUMO

Acinetobacter baumannii poses a great threat in health care settings worldwide, with clinical isolates displaying an ever-evolving multidrug resistance. In strains of A. baumannii, expression of multiple error-prone polymerase genes are corepressed by UmuDAb, a member of the LexA superfamily, and a small protein, DdrR. It is currently unknown how DdrR establishes this repression. Here, we used surface plasmon resonance spectrometry to show that DdrR formed a stable complex with the UmuDAb regulator. Our results indicated that the carboxy-terminal dimerization domain of UmuDAb formed the interaction interface with DdrR. Our in vitro data also showed that RecA-mediated inactivation of UmuDAb was inhibited when this transcription factor was bound to its target DNA. In addition, we showed that DdrR interacted with a putative prophage repressor, homologous to LexA superfamily proteins. These data suggested that DdrR modulated DNA damage response and prophage induction in A. baumannii by binding to LexA-like regulators. IMPORTANCE We previously identified a 50-residue bacteriophage protein, gp7, which interacts with and modulates the function of the LexA transcription factor from Bacillus thuringiensis. Here, we present data that indicates that the small DdrR protein from A. baumannii likely coordinates the SOS response and prophage processes by also interacting with LexA superfamily members. We suggest that similar small proteins that interact with LexA-like proteins to coordinate DNA repair and bacteriophage functions may be common to many bacteria that mount the SOS response.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Mutagênicos , Fatores de Transcrição/metabolismo
5.
Biotechnol Bioeng ; 119(6): 1614-1623, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35211956

RESUMO

Most Escherichia coli overexpression vectors used for recombinant protein production (RPP) depend on organic inducers, for example, sugars or simple conjugates. However, these can be expensive and, sometimes, chemically unstable. To simplify this and to cut the cost of RPP, we have developed vectors controlled by the Escherichia coli nitrate-responsive NarL transcription activator protein, which use nitrate, a cheap, stable, and abundant inorganic ion, to induce high-level controlled RPP. We show that target proteins, such as green fluorescent protein, human growth hormone, and single-chain variable region antibody fragments can be expressed to high levels using our promoter systems. As nitrate levels are high in many commercial fertilizers, we demonstrate that controlled RPP can be achieved using readily available and inexpensive garden products.


Assuntos
Proteínas de Escherichia coli , Sequência de Bases , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Nitratos/metabolismo , Óperon , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Proc Natl Acad Sci U S A ; 116(39): 19695-19704, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501343

RESUMO

Tailoring transcriptional regulation to coordinate the expression of virulence factors in tandem with the core genome is a hallmark of bacterial pathogen evolution. Bacteria encode hundreds of transcription factors forming the base-level control of gene regulation. Moreover, highly homologous regulators are assumed to control conserved genes between members within a species that harbor the same genetic targets. We have explored this concept in 2 Escherichia coli pathotypes that employ distinct virulence mechanisms that facilitate specification of a different niche within the host. Strikingly, we found that the transcription factor YhaJ actively regulated unique gene sets between intestinal enterohemorrhagic E. coli (EHEC) and extraintestinal uropathogenic E. coli (UPEC), despite being very highly conserved. In EHEC, YhaJ directly activates expression of type 3 secretion system components and effectors. Alternatively, YhaJ enhances UPEC virulence regulation by binding directly to the phase-variable type 1 fimbria promoter, driving its expression. Additionally, YhaJ was found to override the universal GAD acid tolerance system but exclusively in EHEC, thereby indirectly enhancing type 3 secretion pleiotropically. These results have revealed that within a species, conserved regulators are actively repurposed in a "personalized" manner to benefit particular lifestyles and drive virulence via multiple distinct mechanisms.


Assuntos
Escherichia coli/genética , Fatores de Transcrição/genética , Fatores de Virulência/genética , Bactérias/genética , Bactérias/patogenicidade , Escherichia coli Êntero-Hemorrágica/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Escherichia coli Uropatogênica/metabolismo , Virulência/genética
7.
Biochem J ; 477(15): 2807-2820, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32662815

RESUMO

The Escherichia coli NarX/NarL two-component response-regulator system regulates gene expression in response to nitrate ions and the NarL protein is a global transcription factor, which activates transcript initiation at many target promoters. One such target, the E. coli ogt promoter, which controls the expression of an O6-alkylguanine-DNA-alkyltransferase, is dependent on NarL binding to two DNA targets centred at positions -44.5 and -77.5 upstream from the transcript start. Here, we describe ogt promoter derivatives that can be activated solely by NarL binding either at position -44.5 or position -77.5. We show that NarL can also activate the ogt promoter when located at position -67.5. We present data to argue that NarL-dependent activation of transcript initiation at the ogt promoter results from a direct interaction between NarL and a determinant in the C-terminal domain of the RNA polymerase α subunit. Footprinting experiments show that, at the -44.5 promoter, NarL and the C-terminal domain of the RNA polymerase α subunit bind to opposite faces of promoter DNA, suggesting an unusual mechanism of transcription activation. Our work suggests new organisations for activator-dependent transcription at promoters and future applications for biotechnology.


Assuntos
Proteínas de Ligação a DNA/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Metiltransferases/genética , Regiões Promotoras Genéticas , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nitratos/farmacologia , Iniciação da Transcrição Genética
8.
J Am Chem Soc ; 142(49): 20651-20660, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33215921

RESUMO

A class of rotaxane is created, not by encapsulating a conventional linear thread, but rather by wrapping a large cucurbit[10]uril macrocycle about a three-dimensional, cylindrical, nanosized, self-assembled supramolecular helicate as the axle. The resulting pseudo-rotaxane is readily converted into a proper interlocked rotaxane by adding branch points to the helicate strands that form the surface of the cylinder (like branches and roots on a tree trunk). The supramolecular cylinder that forms the axle is itself a member of a unique and remarkable class of helicate metallo-drugs that bind Y-shaped DNA junction structures and induce cell death. While pseudo-rotaxanation does not modify the DNA-binding properties, proper, mechanically-interlocked rotaxanation transforms the DNA-binding and biological activity of the cylinder. The ability of the cylinder to de-thread from the rotaxane (and thus to bind DNA junction structures) is controlled by the extent of branching: fully-branched cylinders are locked inside the cucurbit[10]uril macrocycle, while cylinders with incomplete branch points can de-thread from the rotaxane in response to competitor guests. The number of branch points can thus afford kinetic control over the drug de-threading and release.


Assuntos
DNA/química , Metais/química , Nanoestruturas/química , Rotaxanos/química , Hidrocarbonetos Aromáticos com Pontes/química , Complexos de Coordenação/química , Imidazóis/química , Ligantes
9.
Mol Microbiol ; 111(2): 534-551, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30485564

RESUMO

Enteroaggregative Escherichia coli (EAEC), is a diarrhoeagenic human pathogen commonly isolated from patients in both developing and industrialized countries. Pathogenic EAEC strains possess many virulence determinants, which are thought to be involved in causing disease, though, the exact mechanism by which EAEC causes diarrhoea is unclear. Typical EAEC strains possess the transcriptional regulator, AggR, which controls the expression of many virulence determinants, including the attachment adherence fimbriae (AAF) that are necessary for adherence to human gut epithelial cells. Here, using RNA-sequencing, we have investigated the AggR regulon from EAEC strain 042 and show that AggR regulates the transcription of genes on both the bacterial chromosome and the large virulence plasmid, pAA2. Due to the importance of fimbriae, we focused on the two AAF/II fimbrial gene clusters in EAEC 042 (afaB-aafCB and aafDA) and identified the promoter elements and AggR-binding sites required for fimbrial expression. In addition, we examined the organization of the fimbrial operon promoters from other important EAEC strains to understand the rules of AggR-dependent activation. Finally, we generated a series of semi-synthetic promoters to define the minimal sequence required for AggR-mediated activation and show that the correct positioning of a single AggR-binding site is sufficient to confer AggR-dependence.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Regulon , Transativadores/metabolismo , Sítios de Ligação , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Perfilação da Expressão Gênica , Ligação Proteica , Análise de Sequência de RNA
10.
Cell Microbiol ; 21(6): e13012, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30673154

RESUMO

Enteroaggregative Escherichia coli (EAEC) are important intestinal pathogens causing acute and persistent diarrhoeal illness worldwide. Although many putative EAEC virulence factors have been identified, their association with pathogenesis remains unclear. As environmental cues can modulate bacterial virulence, we investigated the effect of oxygen and human intestinal epithelium on EAEC virulence gene expression to determine the involvement of respective gene products in intestinal colonisation and pathogenesis. Using in vitro organ culture of human intestinal biopsies, we established the colonic epithelium as the major colonisation site of EAEC strains 042 and 17-2. We subsequently optimised a vertical diffusion chamber system with polarised T84 colon carcinoma cells for EAEC infection and showed that oxygen induced expression of the global regulator AggR, aggregative adherence fimbriae, E. coli common pilus, EAST-1 toxin, and dispersin in EAEC strain 042 but not in 17-2. Furthermore, the presence of T84 epithelia stimulated additional expression of the mucinase Pic and the toxins HlyE and Pet. This induction was dependent on physical host cell contact and did not require AggR. Overall, these findings suggest that EAEC virulence in the human gut is modulated by environmental signals including oxygen and the intestinal epithelium.


Assuntos
Colo/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Mucosa Intestinal/microbiologia , Oxigênio/metabolismo , Fatores de Virulência/metabolismo , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Toxinas Bacterianas/metabolismo , Linhagem Celular Tumoral , Colo/ultraestrutura , Enterotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/ultraestrutura , Intestino Delgado/microbiologia , Polissacarídeo-Liases/metabolismo , Serina Endopeptidases/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Virulência/genética
11.
Nucleic Acids Res ; 46(18): 9432-9443, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053203

RESUMO

The GIL01 bacteriophage is a temperate phage that infects the insect pathogen Bacillus thuringiensis. During the lytic cycle, phage gene transcription is initiated from three promoters: P1 and P2, which control the expression of the early phage genes involved in genome replication and P3, which controls the expression of the late genes responsible for virion maturation and host lysis. Unlike most temperate phages, GIL01 lysogeny is not maintained by a dedicated phage repressor but rather by the host's regulator of the SOS response, LexA. Previously we showed that the lytic cycle was induced by DNA damage and that LexA, in conjunction with phage-encoded protein gp7, repressed P1. Here we examine the lytic/lysogenic switch in more detail and show that P3 is also repressed by a LexA-gp7 complex, binding to tandem LexA boxes within the promoter. We also demonstrate that expression from P3 is considerably delayed after DNA damage, requiring the phage-encoded DNA binding protein, gp6. Surprisingly, gp6 is homologous to LexA itself and, thus, is a rare example of a LexA homologue directly activating transcription. We propose that the interplay between these two LexA family members, with opposing functions, ensures the timely expression of GIL01 phage late genes.


Assuntos
Proteínas de Bactérias/genética , Bacteriófagos/genética , Lisogenia/genética , Serina Endopeptidases/genética , Transcrição Gênica/genética , Proteínas Virais/fisiologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Sequência de Bases , Citotoxinas/genética , Citotoxinas/metabolismo , Regulação Viral da Expressão Gênica , Regiões Promotoras Genéticas , Homologia de Sequência , Serina Endopeptidases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
PLoS Pathog ; 13(11): e1006760, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29186191

RESUMO

Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections.


Assuntos
Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Lipopolissacarídeos/metabolismo , Vesículas Transportadoras/microbiologia , Parede Celular/química , Parede Celular/metabolismo , Endocitose , Bactérias Gram-Negativas/química , Infecções por Bactérias Gram-Negativas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Cinética , Lipopolissacarídeos/química , Vesículas Transportadoras/metabolismo , Fatores de Virulência/metabolismo
13.
Biochem Soc Trans ; 47(2): 755-763, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30971435

RESUMO

The Escherichia coli lac operon promoter is widely used as a tool to control recombinant protein production in bacteria. Here, we give a brief review of how it functions, how it is regulated, and how, based on this knowledge, a suite of lac promoter derivatives has been developed to give a controlled expression that is suitable for diverse biotechnology applications.


Assuntos
Escherichia coli/metabolismo , Óperon Lac/genética , Regiões Promotoras Genéticas/genética , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética
14.
Biochem Soc Trans ; 47(3): 839-845, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31189732

RESUMO

The activity of any bacterial promoter is generally supposed to be set by its base sequence and the different transcription factors that bind in the local vicinity. Here, we review recent data indicating that the activity of the Escherichia coli lac operon promoter also depends upon its chromosomal location. Factors that affect promoter activity include the binding of nucleoid-associated proteins to neighbouring sequences, supercoiling and the activity of neighbouring promoters. We suggest that many bacterial promoters might be susceptible to similar position-dependent effects and we review recent data showing that the expression of mobile genes encoding antibiotic-resistance determinants is also location-dependent, both when carried on a bacterial chromosome or a conjugative plasmid.


Assuntos
Efeitos da Posição Cromossômica , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Regiões Promotoras Genéticas , Cromossomos Bacterianos , Elementos de DNA Transponíveis , Óperon Lac , Plasmídeos , Transcrição Gênica
15.
Biotechnol Bioeng ; 116(12): 3282-3291, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429928

RESUMO

Escherichia coli is a heavily used platform for the production of biotherapeutic and other high-value proteins, and a favored strategy is to export the protein of interest to the periplasm to simplify downstream processing and facilitate disulfide bond formation. The Sec pathway is the standard means of transporting the target protein but it is unable to transport complex or rapidly folding proteins because the Sec system can only transport proteins in an unfolded state. The Tat system also operates to transport proteins to the periplasm, and it has significant potential as an alternative means of recombinant protein production because it transports fully folded proteins. Here, we have tested the Tat system's full potential for the production of biotherapeutics for the first time using fed-batch fermentation. We expressed human growth hormone (hGH) with a Tat signal peptide in E. coli W3110 "TatExpress" strains that contain elevated levels of the Tat apparatus. This construct contained four amino acids from TorA at the hGH N-terminus as well as the initiation methionine from hGH, which is removed in vivo. We show that the protein is efficiently exported to the periplasm during extended fed-batch fermentation, to the extent that it is by far the most abundant protein in the periplasm. The protein was shown to be homogeneous, disulfide bonded, and active. The bioassay showed that the yields of purified periplasmic hGH are 5.4 g/L culture whereas an enzyme-linked immunosorbent assay gave a figure of 2.39 g/L. Separate analysis of a TorA signal peptide linked to hGH construct lacking any additional amino acids likewise showed efficient export to the periplasm, although yields were approximately two-fold lower.


Assuntos
Escherichia coli/metabolismo , Hormônio do Crescimento Humano/biossíntese , Periplasma/metabolismo , Dobramento de Proteína , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão/biossíntese , Escherichia coli/genética , Hormônio do Crescimento Humano/genética , Humanos , Periplasma/genética , Proteínas Recombinantes de Fusão/genética
16.
Mol Microbiol ; 104(4): 580-594, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28211111

RESUMO

The Escherichia coli K-12 nrf operon encodes a periplasmic nitrite reductase, the expression of which is driven from a single promoter, pnrf. Expression from pnrf is activated by the FNR transcription factor in response to anaerobiosis and further increased in response to nitrite by the response regulator proteins, NarL and NarP. FNR-dependent transcription is suppressed by the binding of two nucleoid associated proteins, IHF and Fis. As Fis levels increase in cells grown in rich medium, the positioning of its binding site, overlapping the promoter -10 element, ensures that pnrf is sharply repressed. Here, we investigate the expression of the nrf operon promoter from various pathogenic enteric bacteria. We show that pnrf from enterohaemorrhagic E. coli is more active than its K-12 counterpart, exhibits substantial FNR-independent activity and is insensitive to nutrient quality, due to an improved -10 element. We also demonstrate that the Salmonella enterica serovar Typhimurium core promoter is more active than previously thought, due to differences around the transcription start site, and that its expression is repressed by downstream sequences. We identify the CsrA RNA binding protein as being responsible for this, and show that CsrA differentially regulates the E. coli K-12 and Salmonella nrf operons.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Nitrito Redutases/genética , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sequência de Bases/genética , Sítios de Ligação/genética , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Enterobacteriaceae/metabolismo , Escherichia coli/genética , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Óperon/genética , Proteínas Periplásmicas , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica/genética
17.
PLoS Genet ; 11(6): e1005354, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26114960

RESUMO

Colicins are plasmid-encoded narrow spectrum antibiotics that are synthesized by strains of Escherichia coli and govern intraspecies competition. In a previous report, we demonstrated that the global transcriptional factor IscR, co dependently with the master regulator of the DNA damage response, LexA, delays induction of the pore forming colicin genes after SOS induction. Here we show that IscR is not involved in the regulation of nuclease colicins, but that the AsnC protein is. We report that AsnC, in concert with LexA, is the key controller of the temporal induction of the DNA degrading colicin E8 gene (cea8), after DNA damage. We demonstrate that a large AsnC nucleosome-like structure, in conjunction with two LexA molecules, prevent cea8 transcription initiation and that AsnC binding activity is directly modulated by L asparagine. We show that L-asparagine is an environmental factor that has a marked impact on cea8 promoter regulation. Our results show that AsnC also modulates the expression of several other DNase and RNase colicin genes but does not substantially affect pore-forming colicin K gene expression. We propose that selection pressure has "chosen" highly conserved regulators to control colicin expression in E. coli strains, enabling similar colicin gene silencing among bacteria upon exchange of colicinogenic plasmids.


Assuntos
Colicinas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transativadores/genética , Fatores de Transcrição/genética , Asparagina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colicinas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Regiões Promotoras Genéticas , Resposta SOS em Genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
18.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28893919

RESUMO

The use of recombinant attenuated Salmonella vaccine (RASV) strains is a promising strategy for presenting heterologous antigens to the mammalian immune system to induce both cellular and humoral immune responses. However, studies on RASV development differ on where heterologous antigens are expressed and localized within the bacterium, and it is unclear how antigen localization modulates the immune response. Previously, we exploited the plasmid-encoded toxin (Pet) autotransporter system for accumulation of heterologous antigens in cell culture supernatant. In the present study, this Pet system was used to express early secretory antigen 6 (ESAT-6), an immunodominant and diagnostic antigen from Mycobacterium tuberculosis, in Salmonella enterica serovar Typhimurium strain SL3261. Three strains were generated, whereby ESAT-6 was expressed as a cytoplasmic (SL3261/cyto), surface-bound (SL3261/surf), or secreted (SL3261/sec) antigen. Using these RASVs, the relationship between antigen localization and immunogenicity in infected C57BL/6 mice was systematically examined. Using purified antigen and specific tetramers, we showed that mice infected with the SL3261/surf or SL3261/sec strain generated large numbers of Th1 CD4+ ESAT-6+ splenic T cells compared to those of mice infected with SL3261/cyto. While all mice showed ESAT-6-specific antibody responses when infected with SL3261/surf or SL3261/sec, peak total serum IgG antibody titers were reached more rapidly in mice that received SL3261/sec. Thus, how antigen is localized after production within bacteria has a more marked effect on the antibody response than on the CD4+ T cell response, which might influence the chosen strategy to localize recombinant antigen in RASVs.


Assuntos
Imunidade Adaptativa , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Vacinas contra a Tuberculose/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Camundongos Endogâmicos C57BL , Plasmídeos , Vacinas contra Salmonella/genética , Salmonella typhimurium/genética , Linfócitos T/imunologia , Vacinas contra a Tuberculose/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
19.
Biotechnol Bioeng ; 114(12): 2828-2836, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842980

RESUMO

Numerous high-value proteins are secreted into the Escherichia coli periplasm by the General Secretory (Sec) pathway, but Sec-based production chassis cannot handle many potential target proteins. The Tat pathway offers a promising alternative because it transports fully folded proteins; however, yields have been too low for commercial use. To facilitate Tat export, we have engineered the TatExpress series of super-secreting strains by introducing the strong inducible bacterial promoter, ptac, upstream of the chromosomal tatABCD operon, to drive its expression in E. coli strains commonly used by industry (e.g., W3110 and BL21). This modification significantly improves the Tat-dependent secretion of human growth hormone (hGH) into the bacterial periplasm, to the extent that secreted hGH is the dominant periplasmic protein after only 1 hr induction. TatExpress strains accumulate in excess of 30 mg L-1 periplasmic recombinant hGH, even in shake flask cultures. A second target protein, an scFv, is also shown to be exported at much higher rates in TatExpress strains.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Produtos do Gene tat/genética , Melhoramento Genético/métodos , Hormônio do Crescimento/biossíntese , Periplasma/metabolismo , Via Secretória/genética , Hormônio do Crescimento/genética , Hormônio do Crescimento/isolamento & purificação , Humanos , Redes e Vias Metabólicas/genética , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
20.
Mol Microbiol ; 97(4): 646-59, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25943387

RESUMO

BAM is a conserved molecular machine, the central component of which is BamA. Orthologues of BamA are found in all Gram-negative bacteria, chloroplasts and mitochondria where it is required for the folding and insertion of ß-barrel containing integral outer membrane proteins (OMPs) into the outer membrane. BamA binds unfolded ß-barrel precursors via the five polypeptide transport-associated (POTRA) domains at its N-terminus. The C-terminus of BamA folds into a ß-barrel domain, which tethers BamA to the outer membrane and is involved in OMP insertion. BamA orthologues are found in all Gram-negative bacteria and appear to function in a species-specific manner. Here we investigate the nature of this species-specificity by examining whether chimeric Escherichia coli BamA fusion proteins, carrying either the ß-barrel or POTRA domains from various BamA orthologues, can functionally replace E. coli BamA. We demonstrate that the ß-barrel domains of many BamA orthologues are functionally interchangeable. We show that defects in the orthologous POTRA domains can be rescued by compensatory mutations within the ß-barrel. These data reveal that the POTRA and barrel domains must be precisely aligned to ensure efficient OMP insertion.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Quimera/genética , Quimera/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Bactérias Gram-Negativas/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA