Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 20(1): 91-100, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21988874

RESUMO

We have designed a series of versatile lipopolyamines which are amenable to chemical modification for in vivo delivery of small interfering RNA (siRNA). This report focuses on one such lipopolyamine (Staramine), its functionalized derivatives and the lipid nanocomplexes it forms with siRNA. Intravenous (i.v.) administration of Staramine/siRNA nanocomplexes modified with methoxypolyethylene glycol (mPEG) provides safe and effective delivery of siRNA and significant target gene knockdown in the lungs of normal mice, with much lower knockdown in liver, spleen, and kidney. Although siRNA delivered via Staramine is initially distributed across all these organs, the observed clearance rate from the lung tissue is considerably slower than in other tissues resulting in prolonged siRNA accumulation on the timescale of RNA interference (RNAi)-mediated transcript depletion. Complete blood count (CBC) analysis, serum chemistry analysis, and histopathology results are all consistent with minimal toxicity. An in vivo screen of mPEG modified Staramine nanocomplexes-containing siRNAs targeting lung cell-specific marker proteins reveal exclusive transfection of endothelial cells. Safe and effective delivery of siRNA to the lung with chemically versatile lipopolyamine systems provides opportunities for investigation of pulmonary cell function in vivo as well as potential treatments of pulmonary disease with RNAi-based therapeutics.


Assuntos
Poliaminas Biogênicas/química , Pulmão/metabolismo , RNA Interferente Pequeno/administração & dosagem , Animais , Poliaminas Biogênicas/síntese química , Poliaminas Biogênicas/metabolismo , Contagem de Células Sanguíneas , Feminino , Inativação Gênica , Injeções Intravenosas , Pulmão/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Nanoconjugados/administração & dosagem , Nanoconjugados/efeitos adversos , Nanoconjugados/química , Polietilenoglicóis/química , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Transfecção
2.
J Gene Med ; 11(8): 718-28, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19507172

RESUMO

BACKGROUND: The poor prognosis associated with ovarian cancer is primarily the result of delayed diagnosis and the lack of an effective treatment for advanced disease. Use of novel immunotherapy strategies are being evaluated that work to enhance local and systemic immune responses against cancer cells and can possibly work together with traditional cytotoxic chemotherapy regimens to produce more effective treatment options. METHODS: In the present study, we describe a gene-based therapy whereby the anticancer cytokine interleukin-12 gene (pmIL-12) is formulated with a synthetic polymeric delivery vehicle (PPC) and administered intraperitoneally into a mouse model of disseminated ovarian cancer. RESULTS: The administration of pmIL-12/PPC in tumor-bearing mice was associated with a shift towards a Th1 immune state, including significant increases in murine IL-12 (mIL-12) and interferon (IFN)-gamma (mIFN-gamma) in ascites fluid, with little change in systemic levels of these proteins. The mIL-12 protein was detectable for several days and could be reintroduced with subsequent injections. We show that treatment delayed the onset of ascites formation and improved survival in a dose-dependent manner. A significant decrease in vascular endothelial growth factor was associated with pmIL-12/PPC delivery and believed to play a predominant role in inhibiting ascites accumulation. Administration of pmIL-12/PPC was associated with minimal toxicity and, when combined with standard chemotherapies, resulted in additive improvement in survival. CONCLUSIONS: Taken together, these results suggest that pmIL-12/PPC may be an effective strategy for inhibiting progression of disseminated ovarian cancer and may offer a new option for treatment of advanced disease that can be used to complement standard therapies.


Assuntos
Terapia Genética , Interleucina-12/genética , Interleucina-12/uso terapêutico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Animais , Ascite/metabolismo , Contagem de Células Sanguíneas , Peso Corporal/efeitos dos fármacos , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Interleucina-12/administração & dosagem , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/sangue , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Vírus
3.
J Control Release ; 158(2): 269-76, 2012 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-22100441

RESUMO

Exploitation of the RNA interference (RNAi) pathway offers the promise of new and effective therapies for a wide variety of diseases. Clinical development of new drugs based on this platform technology is still limited, however, by a lack of safe and efficient delivery systems. Here we report the development of a class of structurally versatile cationic lipopolyamines designed specifically for delivery of siRNA which show high levels of target transcript knockdown in a range of cell types in vitro. A primary benefit of these lipids is the ease with which they may be covalently modified by the addition of functional molecules. For in vivo applications one of the core lipids (Staramine) was modified with methoxypolyethylene glycols (mPEGs) of varying lengths. Upon systemic administration, PEGylated Staramine nanoparticles containing siRNA targeting the caveolin-1 (Cav-1) transcript caused a reduction of the Cav-1 transcript of up to 60%, depending on the mPEG length, specifically in lung tissue after 48h compared to treatment with non-silencing siRNA. In addition, modification with mPEG reduced toxicity associated with intravenous administration. The ability to produce a high level of target gene knockdown in the lung with minimal toxicity demonstrates the potential of these lipopolyamines for use in developing RNAi therapeutics for pulmonary disease.


Assuntos
Técnicas de Transferência de Genes , Lipídeos/administração & dosagem , Poliaminas/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Caveolina 1/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Lipídeos/síntese química , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Poliaminas/síntese química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA