Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(21): 6607-12, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25971726

RESUMO

With available MRI techniques, primary and metastatic liver cancers that are associated with high mortality rates and poor treatment responses are only diagnosed at late stages, due to the lack of highly sensitive contrast agents without Gd(3+) toxicity. We have developed a protein contrast agent (ProCA32) that exhibits high stability for Gd(3+) and a 10(11)-fold greater selectivity for Gd(3+) over Zn(2+) compared with existing contrast agents. ProCA32, modified from parvalbumin, possesses high relaxivities (r1/r2: 66.8 mmol(-1)⋅s(-1)/89.2 mmol(-1)⋅s(-1) per particle). Using T1- and T2-weighted, as well as T2/T1 ratio imaging, we have achieved, for the first time (to our knowledge), robust MRI detection of early liver metastases as small as ∼0.24 mm in diameter, much smaller than the current detection limit of 10-20 mm. Furthermore, ProCA32 exhibits appropriate in vivo preference for liver sinusoidal spaces and pharmacokinetics for high-quality imaging. ProCA32 will be invaluable for noninvasive early detection of primary and metastatic liver cancers as well as for monitoring treatment and guiding therapeutic interventions, including drug delivery.


Assuntos
Meios de Contraste , Neoplasias Hepáticas Experimentais/diagnóstico , Neoplasias Hepáticas Experimentais/metabolismo , Imageamento por Ressonância Magnética/métodos , Melanoma Experimental/diagnóstico , Melanoma Experimental/metabolismo , Parvalbuminas , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacocinética , Feminino , Gadolínio , Limite de Detecção , Neoplasias Hepáticas Experimentais/secundário , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Parvalbuminas/química , Parvalbuminas/farmacocinética , Engenharia de Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética
2.
Sensors (Basel) ; 16(10)2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27782054

RESUMO

Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements.

3.
Curr Biol ; 34(16): 3673-3684.e4, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39067452

RESUMO

Mining is a key driver of land-use change and environmental degradation globally, with the variety of mineral extraction methods used impacting biodiversity across scales. We use IUCN Red List threat assessments of all vertebrates to quantify the current biodiversity threat from mineral extraction, map the global hotspots of threatened biodiversity, and investigate the links between species' habitat use and life-history traits and threat from mineral extraction. Nearly 8% (4,642) of vertebrates are assessed as threatened by mineral extraction, especially mining and quarrying, with fish at particularly high risk. The hotspots of mineral extraction-induced threat are pantropical, as well as a large proportion of regional diversity threatened in northern South America, West Africa, and the Arctic. Species using freshwater habitats are particularly at risk, while the effects of other ecological traits vary between taxa. As the industry expands, it is vital that mineral resources in vulnerable biodiversity regions are managed in accordance with sustainable development goals.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Mineração , Vertebrados , Animais , Vertebrados/fisiologia , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Ecossistema , Peixes/fisiologia
4.
Magn Reson Med ; 68(1): 272-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22144333

RESUMO

The magnetic field dependence of the composite (1)H(2)O nuclear magnetic resonance signal T(1) was measured for excised samples of rat liver, muscle, and kidney over the field range from 0.7 to 7 T (35-300 MHz) with a nuclear magnetic resonance spectrometer using sample-shuttle methods. Based on extensive measurements on simpler component systems, the magnetic field dependence of T(1) of all tissues studied are readily fitted at Larmor frequencies above 1 MHz with a simple relaxation equation consisting of three contributions: a power law, A*ω(-0.60) related to the interaction of water with long-lived-protein binding sites, a logarithmic term B*τ(d) *log(1+1/(ωτ(d))(2)) related to water diffusion at macromolecular interfacial regions, and a constant term associated with the high frequency limit of water-spin-lattice relaxation. The parameters A and B include the concentration and surface area dependences respectively. The logarithmic diffusion term becomes significant at high magnetic fields and is consistent with rapid translational dynamics at macromolecular surfaces. The data are fitted well with translational correlation times of approximately 15 ps for human brain white matter, but with a B value three times larger than gray matter tissues. This analysis suggests that the water-surface translational correlation time is approximately three times longer than in gray matter.


Assuntos
Água Corporal/química , Água Corporal/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Água Corporal/efeitos da radiação , Relação Dose-Resposta à Radiação , Campos Magnéticos , Masculino , Modelos Animais , Especificidade de Órgãos , Doses de Radiação , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
5.
J Phys Chem B ; 125(31): 8673-8681, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342225

RESUMO

Proteins function in crowded aqueous environments, interacting with a diverse range of compounds, and among them, dissolved ions. These interactions are water-mediated. In the present study, we combine field-dependent NMR relaxation (NMRD) and theory to probe water dynamics on the surface of proteins in concentrated aqueous solutions of hen egg-white lysozyme (LZM) and bovine serum albumin (BSA). The experiments reveal that the presence of salts (NaCl or NaI) leads to an opposite ion-specific response for the two proteins: an addition of salt to LZM solutions increases water relaxation rates with respect to the salt-free case, while for BSA solutions, a decrease is observed. The magnitude of the change depends on the ion identity. The developed model accounts for the non-Lorentzian shape of the NMRD profiles and reproduces the experimental data over four decades in Larmor frequency (10 kHz to 110 MHz). It is applicable up to high protein concentrations. The model incorporates the observed ion-specific effects via changes in the protein surface roughness, represented by the surface fractal dimension, and the accompanying changes in the surface water residence times. The response is protein-specific, linked to geometrical aspects of the individual protein surfaces, and goes beyond protein-independent Hofmeister-style ordering of ions.


Assuntos
Soroalbumina Bovina , Água , Íons , Espectroscopia de Ressonância Magnética
6.
Biophys J ; 98(1): 138-46, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20085726

RESUMO

Rotational immobilization of proteins permits characterization of the internal peptide and water molecule dynamics by magnetic relaxation dispersion spectroscopy. Using different experimental approaches, we have extended measurements of the magnetic field dependence of the proton-spin-lattice-relaxation rate by one decade from 0.01 to 300 MHz for (1)H and showed that the underlying dynamics driving the protein (1)H spin-lattice relaxation is preserved over 4.5 decades in frequency. This extension is critical to understanding the role of (1)H(2)O in the total proton-spin-relaxation process. The fact that the protein-proton-relaxation-dispersion profile is a power law in frequency with constant coefficient and exponent over nearly 5 decades indicates that the characteristics of the native protein structural fluctuations that cause proton nuclear spin-lattice relaxation are remarkably constant over this wide frequency and length-scale interval. Comparison of protein-proton-spin-lattice-relaxation rate constants in protein gels equilibrated with (2)H(2)O rather than (1)H(2)O shows that water protons make an important contribution to the total spin-lattice relaxation in the middle of this frequency range for hydrated proteins because of water molecule dynamics in the time range of tens of ns. This water contribution is with the motion of relatively rare, long-lived, and perhaps buried water molecules constrained by the confinement. The presence of water molecule reorientational dynamics in the tens of ns range that are sufficient to affect the spin-lattice relaxation driven by (1)H dipole-dipole fluctuations should make the local dielectric properties in the protein frequency dependent in a regime relevant to catalytically important kinetic barriers to conformational rearrangements.


Assuntos
Modelos Químicos , Proteínas/química , Água/química , Simulação por Computador , Soluções
7.
J Phys Chem B ; 113(40): 13347-56, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19754137

RESUMO

The dynamics of water are critically important to the energies of interaction between proteins and substrates and determine the efficiency of transport at the interface. The magnetic field dependence of the nuclear spin-lattice relaxation rate constant 1/T(1) of water protons provides a direct characterization of water diffusional dynamics at the protein interface. We find that the surface-average translational correlation time is 30-40 ps and the magnetic field dependence of the water proton 1/T(1) is characteristic of two-dimensional diffusion of water in the protein interfacial region. The reduced dimensionality substantially increases the intermolecular re-encounter probability and the efficiency of the surface exploration by the small molecule, water in this case. We propose a comprehensive theory of the translational effects of a small diffusing particle confined in the vicinity of a spherical macromolecule as a function of the relative size of the two particles. We show that the change in the apparent dimensionality of the diffusive exploration is a general result of the small diffusing particle encountering a much larger particle that presents a diffusion barrier. Examination of the effects of the size of the confinement relative to the macromolecule size reveals that the reduced dimensionality characterizing the small-molecule diffusion persists to remarkably small radius ratios. The experimental results on several different proteins in solution support the proposed theoretical model, which may be generalized to other small-particle-large-body systems like vesicles and micelles.


Assuntos
Proteínas/química , Soluções/química , Água/química , Difusão , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Modelos Teóricos , Prótons
8.
Sensors (Basel) ; 9(5): 3256-68, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22412310

RESUMO

Miniature ultraviolet USB coupled spectrometers have become ubiquitously applied over the last decade for making volcanic SO(2) emission rate measurements. The dominantly applied unit has recently been discontinued however, raising the question of which currently available devices should now be implemented. In this paper, we consider, and make recommendations on this matter, by studying a number of inexpensive compact spectrometers in respect of measurement performance and thermal behaviour. Of the studied units, the Avaspec demonstrated the best prospects for the highest time resolution applications, but in the majority of cases, we anticipate users likely preferring the less bulky USB2000+s.

9.
J Environ Manage ; 90(7): 2178-88, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18355955

RESUMO

Remote sensing has the potential to provide quantitative spatially explicit hydrological information across northern peatland complexes. This paper details a multi-scale remote sensing approach for assessing the use of Sphagnum mosses as proxy indicators of near-surface hydrology. Several spectral indices developed from the near infra-red (NIR) and shortwave infra-red (SWIR) liquid water absorption bands, as well as a biophysical index can be correlated with measures of near-surface moisture in the laboratory, in the field and from airborne imagery. Data from all platforms revealed similar patterns in the spectral indices in relation to changes in moisture although the strength of correlations was reduced as the spatial scale increased. The rapid collection of temporally and spatially explicit hydrological data means that the technique has potential practical application for environmental managers and peatland scientists at the local scale. The task of up-scaling the technique for use in operational peatland hydrological monitoring to the global scale is challenging but achievable, and requires further investigation into the heterogeneity of near-surface moisture across Sphagnum patches and the application of novel image processing techniques to improve the spatial resolution of currently available satellite imagery.


Assuntos
Monitoramento Ambiental/métodos , Movimentos da Água , Áreas Alagadas , Raios Infravermelhos , Comunicações Via Satélite , Espectrofotometria Infravermelho
10.
Acc Chem Res ; 45(1): 1-2, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22248448
11.
J Magn Reson ; 189(2): 166-72, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17920315

RESUMO

We report the proton second moment obtained directly from the Free Induction Decay (FID) of the NMR signal of variously hydrated bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) and from the width of the NMR Z-spectrum of the cross-linked protein gels of different concentrations. The second moment of the proteins decreases in a continuous stepwise way as a function of increasing water content, which suggests that the structural and dynamical changes occur in small incremental steps. Although the second moment is dominated by the short range distances of nearest neighbors, the changes in the second moment show that the protein structure becomes more open with increasing hydration level. A difference between the apparent liquid content of the sample as found from decomposition of the FID and the analytically determined water content demonstrates that water absorbed in the early stages of hydration is motionally immobilized and magnetically indistinguishable from rigid protein protons while at high hydration levels some protein side-chain protons move rapidly contributing to liquid-like component of the NMR signal.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Muramidase/química , Muramidase/ultraestrutura , Soroalbumina Bovina/química , Soroalbumina Bovina/ultraestrutura , Água/química , Simulação por Computador , Modelos Moleculares , Conformação Proteica , Prótons , Soluções
12.
J Magn Reson ; 186(2): 176-81, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17336112

RESUMO

Proton spin-lattice relaxation by paramagnetic centers may be dramatically enhanced if the paramagnetic center is rotationally immobilized in the magnetic field. The details of the relaxation mechanism are different from those appropriate to solutions of paramagnetic relaxation agents. We report here large enhancements in the proton spin-lattice relaxation rate constants associated with organic radicals when the radical system is rigidly connected with a rotationally immobilized macromolecular matrix such as a dry protein or a cross-linked protein gel. The paramagnetic contribution to the protein-proton population is direct and distributed internally among the protein protons by efficient spin diffusion. In the case of a cross-linked-protein gel, the paramagnetic effects are carried to the water spins indirectly by chemical exchange mechanisms involving water molecule exchange with rare long-lived water molecule binding sites on the immobilized protein and proton exchange. The dramatic increase in the efficiency of spin relaxation by organic radicals compared with metal systems at low magnetic field strengths results because the electron relaxation time of the radical is orders of magnitude larger than that for metal systems. This gain in relaxation efficiency provides completely new opportunities for the design of spin-lattice relaxation based contrast agents in magnetic imaging and also provides new ways to examine intramolecular protein dynamics.


Assuntos
Prótons , Rotação , Soroalbumina Bovina/química , Animais , Bovinos , Radicais Livres/química , Modelos Químicos , Água/química
13.
J Magn Reson ; 179(2): 199-205, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16386442

RESUMO

We utilize the paramagnetic contribution to proton spin-lattice relaxation rate constants induced by freely diffusing charged paramagnetic centers to investigate the effect of charge on the intermolecular exploration of a protein by the small molecule. The proton NMR spectrum provided 255 resolved resonances that report how the explorer molecule local concentration varies with position on the surface. The measurements integrate over local dielectric constant variations, and, in principle, provide an experimental characterization of the surface free energy sampling biases introduced by the charge distribution on the protein. The experimental results for ribonuclease A obtained using positive, neutral, and negatively charged small nitroxide radicals are qualitatively similar to those expected from electrostatic calculations. However, while systematic electrostatic trends are apparent, the three different combinations of the data sets do not yield internally consistent values for the electrostatic contribution to the intermolecular free energy. We attribute this failure to the weakness of the electrostatic sampling bias for charged nitroxides in water and local variations in effective translational diffusion constant at the water-protein interface, which enters the nuclear spin relaxation equations for the nitroxide-proton dipolar coupling.

14.
J Magn Reson ; 178(2): 329-33, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16256384

RESUMO

The interaction of molecular oxygen with derivatives of nitroxide EPR spin labels has been investigated using nuclear spin-relaxation spectroscopy in aqueous and nonaqueous solvents. The proton spin-lattice relaxation rate induced by oxygen provides a measure of the local concentration of oxygen, which we find is dependent on solvent. In water, the hydrophobic effect increases the local concentration of oxygen in the nonpolar portions of solute molecules. For nitroxides reduced to the hydroxylamine in aqueous solutions, we find that the local concentration of oxygen is approximately twice that associated with a free diffusion hard sphere limit, while in octane, this effect is absent. These results show that nitroxide based ESR oximetry may suffer a reference concentration shift of order a factor of two if the aqueous nitroxide spectrum or relaxation is used as the reference.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oximetria/métodos , Clorofórmio/química , Óxidos N-Cíclicos/química , Octanos/química , Prótons , Marcadores de Spin
15.
PLoS One ; 11(2): e0149260, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26872055

RESUMO

PURPOSE: MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA). MATERIALS AND METHODS: The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4. RESULTS: The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively. CONCLUSIONS: The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Compostos Organometálicos/química , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Ácido Pentético/química
16.
Philos Trans A Math Phys Eng Sci ; 374(2077)2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27550769

RESUMO

Here, we analyse high-frequency (1 min) surface air temperature, mean sea-level pressure (MSLP), wind speed and direction and cloud-cover data acquired during the solar eclipse of 20 March 2015 from 76 UK Met Office weather stations, and compare the results with those from 30 weather stations in the Faroe Islands and 148 stations in Iceland. There was a statistically significant mean UK temperature drop of 0.83±0.63°C, which occurred over 39 min on average, and the minimum temperature lagged the peak of the eclipse by about 10 min. For a subset of 14 (16) relatively clear (cloudy) stations, the mean temperature drop was 0.91±0.78 (0.31±0.40)°C but the mean temperature drops for relatively calm and windy stations were almost identical. Mean wind speed dropped significantly by 9% on average during the first half of the eclipse. There was no discernible effect of the eclipse on the wind-direction or MSLP time series, and therefore we can discount any localized eclipse cyclone effect over Britain during this event. Similar changes in air temperature and wind speed are observed for Iceland, where conditions were generally clearer, but here too there was no evidence of an eclipse cyclone; in the Faroes, there was a much more muted meteorological signature.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

17.
Magn Reson Imaging ; 23(2): 167-73, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15833608

RESUMO

Proton nuclear spin-lattice relaxation in biological systems is generally distinguished from that in inorganic systems such as rocks by the presence of locally disordered macromolecular environments. Rapid exchange of readily observed labile small molecules among differently oriented macromolecular sites generally nearly averages the spectral anisotropies in the small molecule resonances. The biological tissue is generally distinguished from the inorganic matrix by the presence of a significant population of protons in the solid components that are well connected by dipolar spin couplings. Magnetic coupling between the solid and the liquid components generally dominates the magnetic field dependence of the spin-lattice relaxation rates observed in the small molecule components which is generally described by a power law in the Larmor frequency. Recent theory involving a modification of the spin-phonon class of relaxation mechanism provides a quantitative understanding of these data in terms of the dynamics of the chain molecules generally present in the solid spin systems, folded proteins for example.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Animais , Anisotropia , Humanos , Estrutura Molecular , Conformação Proteica , Dobramento de Proteína , Prótons , Detecção de Spin , Água/química
18.
ACS Nano ; 9(12): 11942-50, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26529472

RESUMO

Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.

19.
Nanoscale ; 7(28): 12085-91, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26119138

RESUMO

There is an ever increasing interest in developing new stem cell therapies. However, imaging and tracking stem cells in vivo after transplantation remains a serious challenge. In this work, we report new, functionalized and high-performance Gd(3+)-ion-containing ultra-short carbon nanotube (US-tube) MRI contrast agent (CA) materials which are highly-water-dispersible (ca. 35 mg ml(-1)) without the need of a surfactant. The new materials have extremely high T1-weighted relaxivities of 90 (mM s)(-1) per Gd(3+) ion at 1.5 T at room temperature and have been used to safely label porcine bone-marrow-derived mesenchymal stem cells for MR imaging. The labeled cells display excellent image contrast in phantom imaging experiments, and TEM images of the labeled cells, in general, reveal small clusters of the CA material located within the cytoplasm with 10(9) Gd(3+) ions per cell.


Assuntos
Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/citologia , Nanotubos de Carbono/química , Coloração e Rotulagem/métodos , Animais , Meios de Contraste/síntese química , Meios de Contraste/química , Meios de Contraste/farmacologia , Gadolínio/química , Gadolínio/farmacologia , Células-Tronco Mesenquimais/metabolismo , Tensoativos , Suínos
20.
J Magn Reson ; 171(2): 253-7, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15546751

RESUMO

The magnetic field dependence of nuclear spin-lattice relaxation rates provides a powerful approach to characterizing intra and intermolecular dynamics. NMR spectrometers that provide extensive magnetic relaxation dispersion profiles may switch magnetic field strengths rapidly by either moving the sample or by changing the current in an electromagnet. If the sample is moved, the polarization and detection fields may be very high, which provides both high sensitivity and resolution. This report summarizes the design of a pneumatic sample transport system for glass sample containers that may be used in either a dual magnet spectrometer or in a single magnet system that exploits the fringe field as the secondary magnetic field.


Assuntos
Ressonância Magnética Nuclear Biomolecular/instrumentação , Desenho de Equipamento , Ácidos Fosfatídicos/química , Cimento de Policarboxilato , Resinas Sintéticas , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA