Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(12): 6831-6851, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32893967

RESUMO

Submerged macrophytes are of key importance for the structure and functioning of shallow lakes and can be decisive for maintaining them in a clear water state. The ongoing climate change affects the macrophytes through changes in temperature and precipitation, causing variations in nutrient load, water level and light availability. To investigate how these factors jointly determine macrophyte dominance and growth, we conducted a highly standardized pan-European experiment involving the installation of mesocosms in lakes. The experimental design consisted of mesotrophic and eutrophic nutrient conditions at 1 m (shallow) and 2 m (deep) depth along a latitudinal temperature gradient with average water temperatures ranging from 14.9 to 23.9°C (Sweden to Greece) and a natural drop in water levels in the warmest countries (Greece and Turkey). We determined percent plant volume inhabited (PVI) of submerged macrophytes on a monthly basis for 5 months and dry weight at the end of the experiment. Over the temperature gradient, PVI was highest in the shallow mesotrophic mesocosms followed by intermediate levels in the shallow eutrophic and deep mesotrophic mesocosms, and lowest levels in the deep eutrophic mesocosms. We identified three pathways along which water temperature likely affected PVI, exhibiting (a) a direct positive effect if light was not limiting; (b) an indirect positive effect due to an evaporation-driven water level reduction, causing a nonlinear increase in mean available light; and (c) an indirect negative effect through algal growth and, thus, high light attenuation under eutrophic conditions. We conclude that high temperatures combined with a temperature-mediated water level decrease can counterbalance the negative effects of eutrophic conditions on macrophytes by enhancing the light availability. While a water level reduction can promote macrophyte dominance, an extreme reduction will likely decrease macrophyte biomass and, consequently, their capacity to function as a carbon store and food source.


Assuntos
Lagos , Água , Nutrientes , Suécia , Temperatura
2.
Nat Ecol Evol ; 4(8): 1060-1068, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541802

RESUMO

Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.


Assuntos
Ecossistema , Água Doce , Biota , Europa (Continente) , Rios
3.
Sci Total Environ ; 668: 470-484, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852223

RESUMO

There are infinite possible future scenarios reflecting the impacts of anthropogenic multiple stress on our planet. These impacts include changes in climate and land cover, to which aquatic ecosystems are especially vulnerable. To assess plausible developments of the future state of European surface waters, we considered two climate scenarios and three storylines describing land use, management and anthropogenic development ('Consensus', 'Techno' and 'Fragmented', which in terms of environmental protection represent best-, intermediate- and worst-case, respectively). Three lake and four river basins were selected, representing a spectrum of European conditions through a range of different human impacts and climatic, geographical and biological characteristics. Using process-based and empirical models, freshwater total nitrogen, total phosphorus and chlorophyll-a concentrations were projected for 2030 and 2060. Under current conditions, the water bodies mostly fail good ecological status. In future predictions for the Techno and Fragmented World, concentrations further increased, while concentrations generally declined for the Consensus World. Furthermore, impacts were more severe for rivers than for lakes. Main pressures identified were nutrient inputs from agriculture, land use change, inadequately managed water abstractions and climate change effects. While the basins in the Continental and Atlantic regions were primarily affected by land use changes, in the Mediterranean/Anatolian the main driver was climate change. The Boreal basins showed combined impacts of land use and climate change and clearly reflected the climate-induced future trend of agricultural activities shifting northward. The storylines showed positive effects on ecological status by classical mitigation measures in the Consensus World (e.g. riparian shading), technical improvements in the Techno World (e.g. increasing wastewater treatment efficiency) and agricultural extensification in the Fragmented World. Results emphasize the need for implementing targeted measures to reduce anthropogenic impacts and the importance of having differing levels of ambition for improving the future status of water bodies depending on the societal future to be expected.

4.
Sci Total Environ ; 621: 802-816, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29202291

RESUMO

Climate change and intense land use practices are the main threats to ecosystem structure and services of Mediterranean lakes. Therefore, it is essential to predict the future changes and develop mitigation measures to combat such pressures. In this study, Lake Beysehir, the largest freshwater lake in the Mediterranean basin, was selected to study the impacts of climate change and various land use scenarios on the ecosystem dynamics of Mediterranean freshwater ecosystems and the services that they provide. For this purpose, we linked catchment model outputs to the two different processed-based lake models: PCLake and GLM-AED, and tested the scenarios of five General Circulation Models, two Representation Concentration Pathways and three different land use scenarios, which enable us to consider the various sources of uncertainty. Climate change and land use scenarios generally predicted strong future decreases in hydraulic and nutrient loads from the catchment to the lake. These changes in loads translated into alterations in water level as well as minor changes in chlorophyll a (Chl-a) concentrations. We also observed an increased abundance of cyanobacteria in both lake models. Total phosphorus, temperature and hydraulic loading were found to be the most important variables determining cyanobacteria biomass. As the future scenarios revealed only minor changes in Chl-a due to the significant decrease in nutrient loads, our results highlight that reduced nutrient loading in a warming world may play a crucial role in offsetting the effects of temperature on phytoplankton growth. However, our results also showed increased abundance of cyanobacteria in the future may threaten ecosystem integrity and may limit drinking water ecosystem services. In addition, extended periods of decreased hydraulic loads from the catchment and increased evaporation may lead to water level reductions and may diminish the ecosystem services of the lake as a water supply for irrigation and drinking water.


Assuntos
Mudança Climática , Ecossistema , Lagos/análise , Fitoplâncton , Qualidade da Água , Biomassa , Clorofila/análise , Clorofila A , Cianobactérias , Modelos Teóricos , Turquia
5.
Sci Total Environ ; 581-582: 413-425, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069301

RESUMO

Inter- and intra-annual water level fluctuations and changes in water flow regime are intrinsic characteristics of Mediterranean lakes. Additionally, considering climate change projections for the water-limited Mediterranean region, increased air temperatures and decreased precipitation are anticipated, leading to dramatic declines in lake water levels as well as severe water scarcity problems. The study site, Lake Beysehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - threatened by climatic changes and over-abstraction of water for irrigated crop farming. Therefore, implementation of strict water level management policies is required. In this study, an integrated modeling approach was used to predict the future water levels of Lake Beysehir in response to potential future changes in climate and land use. Water level estimation was performed by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Regression model (ε-SVR). The projected increase in temperature and decrease in precipitation based on the climate change models led to an enhanced potential evapotranspiration and reduced total runoff. On the other hand, the effects of various land use scenarios within the catchment appeared to be comparatively insignificant. According to the ε-SVR model results, changes in hydrological processes caused a water level reduction for all scenarios. Moreover, the MPI-ESM-MR General Circulation Model outputs produced the most dramatic results by predicting that Lake Beysehir may dry out by the 2040s with the current outflow regime. The results indicate that shallow Mediterranean lakes may face a severe risk of drying out and losing their ecosystem values in the near future if the current intensity of water abstraction is not reduced. In addition, the results also demonstrate that outflow management and sustainable use of water sources are vital to sustain lake ecosystems in water-limited regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA