Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Antimicrob Agents Chemother ; 66(4): e0210921, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35266827

RESUMO

In Plasmodium, the first two and rate-limiting enzymes of the pentose phosphate pathway, glucose 6-phosphate dehydrogenase (G6PD) and the 6-phosphogluconolactonase, are bifunctionally fused to a unique enzyme named GluPho, differing structurally and mechanistically from the respective human orthologs. Consistent with the enzyme's essentiality for malaria parasite proliferation and propagation, human G6PD deficiency has immense impact on protection against severe malaria, making PfGluPho an attractive antimalarial drug target. Herein we report on the optimized lead compound N-(((2R,4S)-1-cyclobutyl-4-hydroxypyrrolidin-2-yl)methyl)-6-fluoro-4-methyl-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SBI-0797750), a potent and fully selective PfGluPho inhibitor with robust nanomolar activity against recombinant PfGluPho, PvG6PD, and P. falciparum blood-stage parasites. Mode-of-action studies have confirmed that SBI-0797750 disturbs the cytosolic glutathione-dependent redox potential, as well as the cytosolic and mitochondrial H2O2 homeostasis of P. falciparum blood stages, at low nanomolar concentrations. Moreover, SBI-0797750 does not harm red blood cell (RBC) integrity and phagocytosis and thus does not promote anemia. SBI-0797750 is therefore a very promising antimalarial lead compound.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Falciparum , Malária Vivax , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Hidrolases de Éster Carboxílico , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Fosfatos , Plasmodium falciparum/metabolismo , Plasmodium vivax
2.
Proc Natl Acad Sci U S A ; 110(30): E2838-47, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836641

RESUMO

Residence within a customized vacuole is a highly successful strategy used by diverse intracellular microorganisms. The parasitophorous vacuole membrane (PVM) is the critical interface between Plasmodium parasites and their possibly hostile, yet ultimately sustaining, host cell environment. We show that torins, developed as ATP-competitive mammalian target of rapamycin (mTOR) kinase inhibitors, are fast-acting antiplasmodial compounds that unexpectedly target the parasite directly, blocking the dynamic trafficking of the Plasmodium proteins exported protein 1 (EXP1) and upregulated in sporozoites 4 (UIS4) to the liver stage PVM and leading to efficient parasite elimination by the hepatocyte. Torin2 has single-digit, or lower, nanomolar potency in both liver and blood stages of infection in vitro and is likewise effective against both stages in vivo, with a single oral dose sufficient to clear liver stage infection. Parasite elimination and perturbed trafficking of liver stage PVM-resident proteins are both specific aspects of torin-mediated Plasmodium liver stage inhibition, indicating that torins have a distinct mode of action compared with currently used antimalarials.


Assuntos
Antimaláricos/farmacologia , Fígado/parasitologia , Proteínas de Membrana/metabolismo , Naftiridinas/farmacologia , Plasmodium/efeitos dos fármacos , Animais , Plasmodium/metabolismo , Vacúolos/metabolismo
3.
J Infect Dis ; 205(8): 1278-86, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396598

RESUMO

Plasmodium parasites undergo a clinically silent and obligatory developmental phase in the host's liver cells before they are able to infect erythrocytes and cause malaria symptoms. To overcome the scarcity of compounds targeting the liver stage of malaria, we screened a library of 1037 existing drugs for their ability to inhibit Plasmodium hepatic development. Decoquinate emerged as the strongest inhibitor of Plasmodium liver stages, both in vitro and in vivo. Furthermore, decoquinate kills the parasite's replicative blood stages and is active against developing gametocytes, the forms responsible for transmission. The drug acts by selectively and specifically inhibiting the parasite's mitochondrial bc(1) complex, with little cross-resistance with the antimalarial drug atovaquone. Oral administration of a single dose of decoquinate effectively prevents the appearance of disease, warranting its exploitation as a potent antimalarial compound.


Assuntos
Antimaláricos/farmacologia , Hepatócitos/parasitologia , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium/efeitos dos fármacos , Animais , Atovaquona/farmacologia , Linhagem Celular Tumoral , Decoquinato/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
4.
Malar J ; 11: 312, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22950515

RESUMO

BACKGROUND: Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. METHODS: Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. RESULTS: A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. DISCUSSION: Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene-expression profiling and analysis. The approach outlined here results in substantially improved yield of GFP-expressing parasites, and requires decreased sorting time in comparison to standard methods. It is anticipated that this protocol will be useful for a wide range of applications involving rare events.


Assuntos
Citometria de Fluxo/métodos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Animais , Animais Geneticamente Modificados , Eritrócitos/parasitologia , Filtração/instrumentação , Citometria de Fluxo/instrumentação , Citometria de Fluxo/estatística & dados numéricos , Proteínas de Fluorescência Verde/genética , Humanos , Malária Falciparum/parasitologia , Dispositivos Ópticos , Parasitemia/parasitologia , Proteínas Recombinantes/genética
5.
J Infect Dis ; 203(10): 1445-53, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21502082

RESUMO

A major goal of the worldwide malaria eradication program is the reduction and eventual elimination of malaria transmission. All currently available antimalarial compounds were discovered on the basis of their activity against the asexually reproducing red blood cell stages of the parasite, which are responsible for the morbidity and mortality of human malaria. Resistance against these compounds is widespread, and there is an urgent need for novel approaches to reduce the emergence of resistance to new antimalarials as they are introduced. We have established and validated the first high-throughput assay targeting the red blood cell parasite stage required for transmission, the sexually reproducing gametocyte. This assay will permit identification of compounds specifically targeting the transmission stages in addition to the asexual stage parasites. Such stage-specific compounds may be used in a combination therapy, reducing the emergence of resistance by blocking transmission of resistant parasites that may be selected in a patient.


Assuntos
Antimaláricos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Plasmodium falciparum/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Eritrócitos , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Organismos Geneticamente Modificados , Plasmodium falciparum/genética , Reprodutibilidade dos Testes
6.
J Biol Chem ; 285(48): 37388-95, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20852334

RESUMO

Malaria-associated pathology is caused by the continuous expansion of Plasmodium parasites inside host erythrocytes. To maintain a reducing intracellular milieu in an oxygen-rich environment, malaria parasites have evolved a complex antioxidative network based on two central electron donors, glutathione and thioredoxin. Here, we dissected the in vivo roles of both redox pathways by gene targeting of the respective NADPH-dependent disulfide reductases. We show that Plasmodium berghei glutathione reductase and thioredoxin reductase are dispensable for proliferation of the pathogenic blood stages. Intriguingly, glutathione reductase is vital for extracellular parasite development inside the insect vector, whereas thioredoxin reductase is dispensable during the entire parasite life cycle. Our findings suggest that glutathione reductase is the central player of the parasite redox network, whereas thioredoxin reductase fulfils a specialized and dispensable role for P. berghei. These results also indicate redundant roles of the Plasmodium redox pathways during the pathogenic blood phase and query their suitability as promising drug targets for antimalarial intervention strategies.


Assuntos
Inativação Gênica , Glutationa Redutase/metabolismo , NADP/metabolismo , Plasmodium berghei/enzimologia , Plasmodium berghei/genética , Proteínas de Protozoários/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Animais , Proliferação de Células , Glutationa Redutase/química , Glutationa Redutase/genética , Humanos , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/química , Plasmodium berghei/citologia , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Ratos , Ratos Sprague-Dawley , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética
7.
Mol Biochem Parasitol ; 160(1): 65-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18448175

RESUMO

Methylene blue (MB) is known to have trypanocidal activity. We tested the interactions of MB with a number of trypanosomatid-specific molecules of the antioxidant metabolism. At pH 7, trypanothione and other (di)thiols were oxidized to disulfides by the phenothiazine drug. MB inhibited Trypanosoma cruzi trypanothione reductase (TR) (K(i)=1.9 microM), and served as a significant subversive substrate of this enzyme (K(M)=30 microM, k(cat)=4.9s(-1)). With lipoamide dehydrogenase, the second thiol-generating flavoenzyme of T. cruzi, the catalytic efficiency for MB reduction was found to be almost 10(6)M(-1)s(-1). When the system MB-enzyme-molecular oxygen acts as a NAD(P)H-driven redox cycler, a reactive oxygen species, H(2)O(2) or superoxide, is produced in each cycle. Since MB is an affordable, available, and accessible drug it might be tested--alone or in drug combinations--against trypanosomatid-caused diseases of animal and man.


Assuntos
Azul de Metileno/farmacocinética , Compostos de Sulfidrila/metabolismo , Tripanossomicidas/farmacocinética , Trypanosoma/enzimologia , Animais , Antioxidantes/metabolismo , Catálise , Di-Hidrolipoamida Desidrogenase/antagonistas & inibidores , Glutationa/análogos & derivados , Glutationa/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Espermidina/análogos & derivados , Espermidina/metabolismo
8.
ACS Infect Dis ; 4(11): 1601-1612, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30129748

RESUMO

Studying redox metabolism in malaria parasites is of great interest for understanding parasite biology, parasite-host interactions, and mechanisms of drug action. Genetically encoded fluorescent redox sensors have recently been described as powerful tools for determining the glutathione-dependent redox potential in living parasites. In the present study, we genomically integrated and expressed the ratiometric redox sensors hGrx1-roGFP2 (human glutaredoxin 1 fused to reduction-oxidation sensitive green fluorescent protein) and sfroGFP2 (superfolder roGFP2) in the cytosol of NF54- attB blood-stage Plasmodium falciparum parasites. Both sensors were evaluated in vitro and in cell culture with regard to their fluorescence properties and reactivity. As genomic integration allows for the stable expression of redox sensors in parasites, we systematically compared single live-cell imaging with plate reader detection. For these comparisons, short-term effects of redox-active compounds were analyzed along with mid- and long-term effects of selected antimalarial agents. Of note, the single components of the redox probes themselves did not influence the redox balance of the parasites. Our analyses revealed comparable results for both the hGrx1-roGFP2 and sfroGFP2 probes, with sfroGFP2 exhibiting a more pronounced fluorescence intensity in cellulo. Accordingly, the sfroGFP2 probe was employed to monitor the fluorescence signals throughout the parasites' asexual life cycle. Through the use of stable genomic integration, we demonstrate a means of overcoming the limitations of transient transfection, allowing more detailed in-cell studies as well as high-throughput analyses using plate reader-based approaches.


Assuntos
Corantes Fluorescentes , Glutarredoxinas/análise , Interações Hospedeiro-Parasita , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Citosol/efeitos dos fármacos , Citosol/parasitologia , Fluorescência , Proteínas de Fluorescência Verde/análise , Humanos , Oxirredução , Plasmodium falciparum/efeitos dos fármacos , Proteínas Recombinantes/análise , Transfecção
9.
Nat Protoc ; 10(8): 1131-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26134953

RESUMO

Conversion from asexual proliferation to sexual differentiation initiates the production of the gametocyte, which is the malaria parasite stage required for human-to-mosquito transmission. This protocol describes an assay designed to probe the effect of drugs or other perturbations on asexual replication, sexual conversion and early gametocyte development in the major human malaria parasite Plasmodium falciparum. Synchronized asexually replicating parasites are induced for gametocyte production by the addition of conditioned medium, and they are then exposed to the treatment of interest during sexual commitment or at any subsequent stage of early gametocyte development. Flow cytometry is used to measure asexual proliferation and gametocyte production via DNA dye staining and the gametocyte-specific expression of a fluorescent protein, respectively. This screening approach may be used to identify and evaluate potential transmission-blocking compounds and to further investigate the mechanism of sexual conversion in malaria parasites. The full protocol can be completed in 11 d.


Assuntos
Plasmodium falciparum/fisiologia , Citometria de Fluxo , Malária Falciparum/transmissão , Parasitologia/métodos
10.
Genome Med ; 7(1): 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25722744

RESUMO

BACKGROUND: During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes - sexual stage precursor cells - likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the bloodstream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. RESULTS: We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post-invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and approximately 30 hours post-invasion and mature gametocytes after around 7 days post-invasion. CONCLUSIONS: This study provides a bioinformatics resource for the functional elucidation of parasite life cycle dynamics and specifically demonstrates the presence of the gametocyte ring stages in circulation, adding significantly to our understanding of the dynamics of gametocyte sequestration in vivo.

11.
PLoS One ; 3(6): e2474, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-18575607

RESUMO

Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the rodent model malaria parasite and phenotypic analysis during life cycle progression revealed a non-vital role in vivo. Our findings suggest that plasmoredoxin fulfils a specialized and dispensable role for Plasmodium and highlights the need for target validation to inform drug development strategies.


Assuntos
Peroxidases/genética , Plasmodium berghei/enzimologia , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Estágios do Ciclo de Vida , Plasmodium berghei/crescimento & desenvolvimento , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Antimicrob Agents Chemother ; 52(1): 183-91, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17967916

RESUMO

Methylene blue (MB) has experienced a renaissance mainly as a component of drug combinations against Plasmodium falciparum malaria. Here, we report biochemically relevant pharmacological data on MB such as rate constants for the uncatalyzed reaction of MB at pH 7.4 with cellular reductants like NAD(P)H (k = 4 M(-1) s(-1)), thioredoxins (k = 8.5 to 26 M(-1) s(-1)), dihydrolipoamide (k = 53 M(-1) s(-1)), and slowly reacting glutathione. As the disulfide reductases are prominent targets of MB, optical tests for enzymes reducing MB at the expense of NAD(P)H under aerobic conditions were developed. The product leucomethylene blue (leucoMB) is auto-oxidized back to MB at pH 7 but can be stabilized by enzymes at pH 5.0, which makes this colorless compound an interesting drug candidate. MB was found to be an inhibitor and/or a redox-cycling substrate of mammalian and P. falciparum disulfide reductases, with the kcat values ranging from 0.03 s(-1) to 10 s(-1) at 25 degrees C. Kinetic spectroscopy of mutagenized glutathione reductase indicates that MB reduction is conducted by enzyme-bound reduced flavin rather than by the active-site dithiol Cys58/Cys63. The enzyme-catalyzed reduction of MB and subsequent auto-oxidation of the product leucoMB mean that MB is a redox-cycling agent which produces H2O2 at the expense of O2 and of NAD(P)H in each cycle, turning the antioxidant disulfide reductases into pro-oxidant enzymes. This explains the terms subversive substrate or turncoat inhibitor for MB. The results are discussed in cell-pathological and clinical contexts.


Assuntos
Dissulfetos/metabolismo , Azul de Metileno/metabolismo , Oxirredutases/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Aerobiose , Animais , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/análogos & derivados , Azul de Metileno/química , Azul de Metileno/farmacologia , Oxirredução , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Proteínas de Protozoários/química , Especificidade por Substrato
13.
Antimicrob Agents Chemother ; 49(11): 4592-7, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16251300

RESUMO

Methylene blue (MB) represents a promising antimalarial drug candidate for combination therapies against drug-resistant parasite strains. To support and facilitate the application of MB in future field trials, we studied its antiparasitic effects in vitro. MB is active against all blood stages of both chloroquine (CQ)-sensitive and CQ-resistant P. falciparum strains with 50% inhibitory concentration (IC50) values in the lower nanomolar range. Ring stages showed the highest susceptibility. As demonstrated by high-performance liquid chromatography-tandem mass spectrometry on different cell culture compartments, MB is accumulated in malarial parasites. In drug combination assays, MB was found to be antagonistic with CQ and other quinoline antimalarials like piperaquine and amodiaquine; with mefloquine and quinine, MB showed additive effects. In contrast, we observed synergistic effects of MB with artemisinin, artesunate, and artemether for all tested parasite strains. Artemisinin/MB combination concentration ratios of 3:1 were found to be advantageous, demonstrating that the combination of artemisinin with a smaller amount of MB can be recommended for reaching maximal therapeutic effects. Our in vitro data indicate that combinations of MB with artemisinin and related endoperoxides might be a promising option for treating drug-resistant malaria and should be studied in future field trials. Resistance development under this drug combination is unlikely to occur.


Assuntos
Artemisininas/farmacologia , Cloroquina/farmacologia , Azul de Metileno/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Resistência a Medicamentos , Sinergismo Farmacológico , Eritrócitos/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA