Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 110(2): 461-70, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22903730

RESUMO

Reduced downstream costs, together with high purity recovery of polyhydroxyalkanoate (PHA), will accelerate the commercialization of high quality PHA-based products. In this work, a process was designed for effective recovery of the copolymer poly(hydroxybutyrate-co-hydroxyhexanoate) (P(HB-co-HHx)) containing high levels of HHx (>15 mol%) from Ralstonia eutropha biomass using non-halogenated solvents. Several non-halogenated solvents (methyl isobutyl ketone, methyl ethyl ketone, and butyl acetate and ethyl acetate) were found to effectively dissolve the polymer. Isoamyl alcohol was found to be not suitable for extraction of polymer. All PHA extractions were performed from both dry and wet cells at volumes ranging from 2 mL to 3 L using a PHA to solvent ratio of 2% (w/v). Ethyl acetate showed both high recovery levels and high product purities (up to 99%) when using dry cells as starting material. Recovery from wet cells, however, eliminates a biomass drying step during the downstream process, potentially saving time and cost. When wet cells were used, methyl isobutyl ketone (MIBK) was shown to be the most favorable solvent for PHA recovery. Purities of up to 99% and total recovery yields of up to 84% from wet cells were reached. During polymer recovery with either MIBK or butyl acetate, fractionation of the extracted PHA occurred, based on the HHx content of the polymer. PHA with higher HHx content (17-30 mol%) remained completely in solution, while polymer with a lower HHx content (11-16 mol%) formed a gel-like phase. All PHA in solution could be precipitated by addition of threefold volumes of n-hexane or n-heptane to unfiltered PHA solutions. Effective recycling of the solvents in this system is predicted due to the large differences in the boiling points between solvent and precipitant. Our findings show that two non-halogenated solvents are good candidates to replace halogenated solvents like chloroform for recovery of high quality PHA.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Biotecnologia/métodos , Caproatos/metabolismo , Cupriavidus necator/metabolismo , Ácido 3-Hidroxibutírico/química , Biomassa , Caproatos/química , Precipitação Química , Fermentação , Hexanos/química , Hexanos/metabolismo , Lipídeos/isolamento & purificação , Metil n-Butil Cetona/química , Metil n-Butil Cetona/metabolismo , Solubilidade , Solventes
2.
Biotechnol Bioeng ; 109(1): 74-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21809332

RESUMO

Improved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA-based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low price compared to sugars and other refined carbon feedstocks. Different PHA production strategies were compared using a recombinant strain of Ralstonia eutropha that produces high amounts of P(HB-co-HHx) when grown on plant oils. This R. eutropha strain was grown to high cell densities using batch, extended batch, and fed batch fermentation strategies, in which PHA accumulation was triggered by nitrogen limitation. While extended batch culture produced more biomass and PHA than batch culture, fed batch cultivation was shown to produce the highest levels of biomass and PHA. The highest titer achieved was over 139 g/L cell dry weight (CDW) of biomass with 74% of CDW as PHA containing 19 mol% HHx. Our data suggest that the fermentation process is scalable with a space time yield (STY) better than 1 g PHA/L/h. The achieved biomass concentration and PHA yield are among the highest reported for the fermentation of recombinant R. eutropha strains producing P(HB-co-HHx).


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Reatores Biológicos/microbiologia , Caproatos/metabolismo , Cupriavidus necator/metabolismo , Óleos de Plantas/metabolismo , Biomassa , Meios de Cultura/química , Cupriavidus necator/crescimento & desenvolvimento , Fermentação , Nitrogênio/metabolismo , Óleo de Palmeira
3.
Appl Environ Microbiol ; 77(9): 2847-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21398488

RESUMO

The polyhydroxyalkanoate (PHA) copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has been shown to have potential to serve as a commercial bioplastic. Synthesis of P(HB-co-HHx) from plant oil has been demonstrated with recombinant Ralstonia eutropha strains expressing heterologous PHA synthases capable of incorporating HB and HHx into the polymer. With these strains, however, short-chain-length fatty acids had to be included in the medium to generate PHA with high HHx content. Our group has engineered two R. eutropha strains that accumulate high levels of P(HB-co-HHx) with significant HHx content directly from palm oil, one of the world's most abundant plant oils. The strains express a newly characterized PHA synthase gene from the bacterium Rhodococcus aetherivorans I24. Expression of an enoyl coenzyme A (enoyl-CoA) hydratase gene (phaJ) from Pseudomonas aeruginosa was shown to increase PHA accumulation. Furthermore, varying the activity of acetoacetyl-CoA reductase (encoded by phaB) altered the level of HHx in the polymer. The strains with the highest PHA titers utilized plasmids for recombinant gene expression, so an R. eutropha plasmid stability system was developed. In this system, the essential pyrroline-5-carboxylate reductase gene proC was deleted from strain genomes and expressed from a plasmid, making the plasmid necessary for growth in minimal media. This study resulted in two engineered strains for production of P(HB-co-HHx) from palm oil. In palm oil fermentations, one strain accumulated 71% of its cell dry weight as PHA with 17 mol% HHx, while the other strain accumulated 66% of its cell dry weight as PHA with 30 mol% HHx.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Biotecnologia/métodos , Caproatos/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Redes e Vias Metabólicas/genética , Óleos de Plantas/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Engenharia Genética , Dados de Sequência Molecular , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus/enzimologia , Rhodococcus/genética , Análise de Sequência de DNA
4.
Appl Microbiol Biotechnol ; 89(5): 1611-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21279345

RESUMO

Polyhydroxyalkanoates (PHAs) are natural polyesters synthesized by bacteria for carbon and energy storage that also have commercial potential as bioplastics. One promising class of carbon feedstocks for industrial PHA production is plant oils, due to the high carbon content of these compounds. The bacterium Ralstonia eutropha accumulates high levels of PHA and can effectively utilize plant oil. Growth experiments that include plant oil, however, are difficult to conduct in a quantitative and reproducible manner due to the heterogeneity of the two-phase medium. In order to overcome this obstacle, a new culture method was developed in which palm oil was emulsified in growth medium using the glycoprotein gum arabic as the emulsifying agent. Gum arabic did not influence R. eutropha growth and could not be used as a nutrient source by the bacteria. R. eutropha was grown in the emulsified oil medium and PHA production was measured over time. Additionally, an extraction method was developed to monitor oil consumption. The new method described in this study allows quantitative, reproducible R. eutropha experiments to be performed with plant oils. The method may also prove useful for studying growth of different bacteria on plant oils and other hydrophobic carbon sources.


Assuntos
Cupriavidus necator/crescimento & desenvolvimento , Cupriavidus necator/metabolismo , Hidroxibutiratos/metabolismo , Óleos de Plantas/metabolismo , Poliésteres/metabolismo , Meios de Cultura/química , Emulsões/metabolismo , Goma Arábica/química
5.
J Bacteriol ; 192(20): 5319-28, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20729355

RESUMO

The bacterium Ralstonia eutropha H16 synthesizes polyhydroxybutyrate (PHB) from acetyl coenzyme A (acetyl-CoA) through reactions catalyzed by a ß-ketothiolase (PhaA), an acetoacetyl-CoA reductase (PhaB), and a polyhydroxyalkanoate synthase (PhaC). An operon of three genes encoding these enzymatic steps was discovered in R. eutropha and has been well studied. Sequencing and analysis of the R. eutropha genome revealed putative isologs for each of the PHB biosynthetic genes, many of which had never been characterized. In addition to the previously identified phaB1 gene, the genome contains the isologs phaB2 and phaB3 as well as 15 other potential acetoacetyl-CoA reductases. We have investigated the roles of the three phaB isologs by deleting them from the genome individually and in combination. It was discovered that the gene products of both phaB1 and phaB3 contribute to PHB biosynthesis in fructose minimal medium but that in plant oil minimal medium and rich medium, phaB3 seems to be unexpressed. This raises interesting questions concerning the regulation of phaB3 expression. Deletion of the gene phaB2 did not result in an observable phenotype under the conditions tested, although this gene does encode an active reductase. Addition of the individual reductase genes to the genome of the ΔphaB1 ΔphaB2 ΔphaB3 strain restored PHB production, and in the course of our complementation experiments, we serendipitously created a PHB-hyperproducing mutant. Measurement of the PhaB and PhaA activities of the mutant strains indicated that the thiolase reaction is the limiting step in PHB biosynthesis in R. eutropha H16 during nitrogen-limited growth on fructose.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Cupriavidus necator/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Oxirredutases do Álcool/classificação , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Meios de Cultura/química , Cupriavidus necator/classificação , Cupriavidus necator/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Teste de Complementação Genética , Genoma Bacteriano , Genótipo , Mutação
6.
J Bacteriol ; 192(20): 5454-64, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709892

RESUMO

Ralstonia eutropha H16 is capable of growth and polyhydroxyalkanoate production on plant oils and fatty acids. However, little is known about the triacylglycerol and fatty acid degradation pathways of this bacterium. We compare whole-cell gene expression levels of R. eutropha H16 during growth and polyhydroxyalkanoate production on trioleate and fructose. Trioleate is a triacylglycerol that serves as a model for plant oils. Among the genes of note, two potential fatty acid ß-oxidation operons and two putative lipase genes were shown to be upregulated in trioleate cultures. The genes of the glyoxylate bypass also exhibit increased expression during growth on trioleate. We observed that single ß-oxidation operon deletion mutants of R. eutropha could grow using palm oil or crude palm kernel oil as the sole carbon source, regardless of which operon was present in the genome, but a double mutant was unable to grow under these conditions. A lipase deletion mutant did not exhibit a growth defect in emulsified oil cultures but did exhibit a phenotype in cultures containing nonemulsified oil. Mutants of the glyoxylate shunt gene for isocitrate lyase were able to grow in the presence of oils, while a malate synthase (aceB) deletion mutant grew more slowly than wild type. Gene expression under polyhydroxyalkanoate storage conditions was also examined. Many findings of this analysis confirm results from previous studies by our group and others. This work represents the first examination of global gene expression involving triacylglycerol and fatty acid catabolism genes in R. eutropha.


Assuntos
Cupriavidus necator/classificação , Cupriavidus necator/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cupriavidus necator/genética , Ácidos Graxos/metabolismo , Frutose , Hidroxibutiratos/metabolismo , Mutação , Oxirredução , Óleos de Plantas/metabolismo , Poliésteres/metabolismo , Análise Serial de Proteínas
7.
Appl Microbiol Biotechnol ; 87(6): 2037-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20535466

RESUMO

We employed systematic mixture analysis to determine optimal levels of acetate, propionate, and butyrate for cell growth and polyhydroxyalkanoate (PHA) production by Ralstonia eutropha H16. Butyrate was the preferred acid for robust cell growth and high PHA production. The 3-hydroxyvalerate content in the resulting PHA depended on the proportion of propionate initially present in the growth medium. The proportion of acetate dramatically affected the final pH of the growth medium. A model was constructed using our data that predicts the effects of these acids, individually and in combination, on cell dry weight (CDW), PHA content (%CDW), PHA production, 3HV in the polymer, and final culture pH. Cell growth and PHA production improved approximately 1.5-fold over initial conditions when the proportion of butyrate was increased. Optimization of the phosphate buffer content in medium containing higher amounts of butyrate improved cell growth and PHA production more than 4-fold. The validated organic acid mixture analysis model can be used to optimize R. eutropha culture conditions, in order to meet targets for PHA production and/or polymer HV content. By modifying the growth medium made from treated industrial waste, such as palm oil mill effluent, more PHA can be produced.


Assuntos
Ácidos/metabolismo , Meios de Cultura/metabolismo , Cupriavidus necator/crescimento & desenvolvimento , Cupriavidus necator/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Butiratos/metabolismo , Meios de Cultura/química , Cupriavidus necator/genética , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA