Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell ; 138(2): 366-76, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19632184

RESUMO

Microtubules are filamentous polymers essential for cell viability. Microtubule plus-end tracking proteins (+TIPs) associate with growing microtubule plus ends and control microtubule dynamics and interactions with different cellular structures during cell division, migration, and morphogenesis. EB1 and its homologs are highly conserved proteins that play an important role in the targeting of +TIPs to microtubule ends, but the underlying molecular mechanism remains elusive. By using live cell experiments and in vitro reconstitution assays, we demonstrate that a short polypeptide motif, Ser-x-Ile-Pro (SxIP), is used by numerous +TIPs, including the tumor suppressor APC, the transmembrane protein STIM1, and the kinesin MCAK, for localization to microtubule tips in an EB1-dependent manner. Structural and biochemical data reveal the molecular basis of the EB1-SxIP interaction and explain its negative regulation by phosphorylation. Our findings establish a general "microtubule tip localization signal" (MtLS) and delineate a unifying mechanism for this subcellular protein targeting process.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Sinais Direcionadores de Proteínas , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência
2.
Plant Physiol ; 186(1): 285-296, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33599267

RESUMO

Thioredoxin reductases control the redox state of thioredoxins (Trxs)-ubiquitous proteins that regulate a spectrum of enzymes by dithiol-disulfide exchange reactions. In most organisms, Trx is reduced by NADPH via a thioredoxin reductase flavoenzyme (NTR), but in oxygenic photosynthetic organisms, this function can also be performed by an iron-sulfur ferredoxin (Fdx)-dependent thioredoxin reductase (FTR) that links light to metabolic regulation. We have recently found that some cyanobacteria, such as the thylakoid-less Gloeobacter and the ocean-dwelling green oxyphotobacterium Prochlorococcus, lack NTR and FTR but contain a thioredoxin reductase flavoenzyme (formerly tentatively called deeply-rooted thioredoxin reductase or DTR), whose electron donor remained undefined. Here, we demonstrate that Fdx functions in this capacity and report the crystallographic structure of the transient complex between the plant-type Fdx1 and the thioredoxin reductase flavoenzyme from Gloeobacter violaceus. Thereby, our data demonstrate that this cyanobacterial enzyme belongs to the Fdx flavin-thioredoxin reductase (FFTR) family, originally described in the anaerobic bacterium Clostridium pasteurianum. Accordingly, the enzyme hitherto termed DTR is renamed FFTR. Our experiments further show that the redox-sensitive peptide CP12 is modulated in vitro by the FFTR/Trx system, demonstrating that FFTR functionally substitutes for FTR in light-linked enzyme regulation in Gloeobacter. Altogether, we demonstrate the FFTR is spread within the cyanobacteria phylum and propose that, by substituting for FTR, it connects the reduction of target proteins to photosynthesis. Besides, the results indicate that FFTR acquisition constitutes a mechanism of evolutionary adaptation in marine phytoplankton such as Prochlorococcus that live in low-iron environments.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/química , Cianobactérias/química , Proteínas Ferro-Enxofre/química , Oxirredutases/química
3.
Proc Natl Acad Sci U S A ; 115(51): 12967-12972, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30510005

RESUMO

Ferredoxin-dependent thioredoxin reductase was identified 35 y ago in the fermentative bacterium Clostridium pasteurianum [Hammel KE, Cornwell KL, Buchanan BB (1983) Proc Natl Acad Sci USA 80:3681-3685]. The enzyme, a flavoprotein, was strictly dependent on ferredoxin as reductant and was inactive with either NADPH or NADH. This early work has not been further pursued. We have recently reinvestigated the problem and confirmed that the enzyme, here designated ferredoxin-dependent flavin thioredoxin reductase (FFTR), is a flavoprotein. The enzyme differs from ferredoxin-thioredoxin reductase (FTR), which has a signature [4Fe-4S] cluster, but shows structural similarities to NADP-dependent thioredoxin reductase (NTR). Comparative amino acid sequence analysis showed that FFTR is present in a number of clostridial species, some of which lack both FTR and an archetypal NTR. We have isolated, crystallized, and determined the structural properties of FFTR from a member of this group, Clostridium acetobutylicum, both alone and in complex with Trx. The structures showed an elongated FFTR homodimer, each monomer comprising two Rossmann domains and a noncovalently bound FAD cofactor that exposes the isoalloxazine ring to the solvent. The FFTR structures revealed an alternative domain organization compared with NTR that enables the enzyme to accommodate Fdx rather than NADPH. The results suggest that FFTR exists in a range of conformations with varying degrees of domain separation in solution and that the stacking between the two redox-active groups for the transfer of reducing equivalents results in a profound structural reorganization. A mechanism in accord with the findings is proposed.


Assuntos
Clostridium acetobutylicum/enzimologia , Ferredoxinas/química , Flavoproteínas/química , Cristalografia por Raios X , Flavoproteínas/metabolismo , Flavoproteínas/fisiologia , Modelos Moleculares , NADP/química , Oxirredução , Conformação Proteica , Análise de Sequência de Proteína , Homologia de Sequência
4.
J Biol Chem ; 294(40): 14768-14775, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31416831

RESUMO

IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the rate-limiting step in the de novo guanine nucleotide biosynthetic pathway. Because of its involvement in the control of cell division and proliferation, IMPDH represents a therapeutic for managing several diseases, including microbial infections and cancer. IMPDH must be tightly regulated, but the molecular mechanisms responsible for its physiological regulation remain unknown. To this end, we recently reported an important role of adenine and guanine mononucleotides that bind to the regulatory Bateman domain to allosterically modulate the catalytic activity of eukaryotic IMPDHs. Here, we have used enzyme kinetics, X-ray crystallography, and small-angle X-ray scattering (SAXS) methodologies to demonstrate that adenine/guanine dinucleoside polyphosphates bind to the Bateman domain of IMPDH from the fungus Ashbya gossypii with submicromolar affinities. We found that these dinucleoside polyphosphates modulate the catalytic activity of IMPDHs in vitro by efficiently competing with the adenine/guanine mononucleotides for the allosteric sites. These results suggest that dinucleoside polyphosphates play important physiological roles in the allosteric regulation of IMPDHs by adding an additional mechanism for fine-tuning the activities of these enzymes. We propose that these findings may have important implications for the design of therapeutic strategies to inhibit IMPDHs.


Assuntos
Fosfatos de Dinucleosídeos/química , IMP Desidrogenase/química , Conformação Proteica , Domínios Proteicos/genética , Regulação Alostérica/genética , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Sítios de Ligação/genética , Catálise , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/genética , Eremothecium/genética , Nucleotídeos de Guanina , Humanos , IMP Desidrogenase/genética , IMP Desidrogenase/ultraestrutura , Modelos Moleculares , Neoplasias/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Proc Natl Acad Sci U S A ; 114(48): 12725-12730, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133410

RESUMO

Flavoproteins participate in a wide variety of physiologically relevant processes that typically involve redox reactions. Within this protein superfamily, there exists a group that is able to transfer reducing equivalents from FAD to a redox-active disulfide bridge, which further reduces disulfide bridges in target proteins to regulate their structure and function. We have identified a previously undescribed type of flavin enzyme that is exclusive to oxygenic photosynthetic prokaryotes and that is based on the primary sequence that had been assigned as an NADPH-dependent thioredoxin reductase (NTR). However, our experimental data show that the protein does not transfer reducing equivalents from flavins to disulfides as in NTRs but functions in the opposite direction. High-resolution structures of the protein from Gloeobacter violaceus and Synechocystis sp. PCC6803 obtained by X-ray crystallography showed two juxtaposed FAD molecules per monomer in redox communication with an active disulfide bridge in a variant of the fold adopted by NTRs. We have tentatively named the flavoprotein "DDOR" (diflavin-linked disulfide oxidoreductase) and propose that its activity is linked to a thiol-based transfer of reducing equivalents in bacterial membranes. These findings expand the structural and mechanistic repertoire of flavoenzymes with oxidoreductase activity and pave the way to explore new protein engineering approaches aimed at designing redox-active proteins for diverse biotechnological applications.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Dissulfetos/química , Flavina-Adenina Dinucleotídeo/química , Oxirredutases/química , Synechocystis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Membrana Celular/química , Membrana Celular/enzimologia , Cristalografia por Raios X , Cianobactérias/genética , Dissulfetos/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Synechocystis/genética , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
J Biol Chem ; 291(36): 18643-62, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27413182

RESUMO

Plakins are large multi-domain proteins that interconnect cytoskeletal structures. Plectin is a prototypical plakin that tethers intermediate filaments to membrane-associated complexes. Most plakins contain a plakin domain formed by up to nine spectrin repeats (SR1-SR9) and an SH3 domain. The plakin domains of plectin and other plakins harbor binding sites for junctional proteins. We have combined x-ray crystallography with small angle x-ray scattering (SAXS) to elucidate the structure of the plakin domain of plectin, extending our previous analysis of the SR1 to SR5 region. Two crystal structures of the SR5-SR6 region allowed us to characterize its uniquely wide inter-repeat conformational variability. We also report the crystal structures of the SR7-SR8 region, refined to 1.8 Å, and the SR7-SR9 at lower resolution. The SR7-SR9 region, which is conserved in all other plakin domains, forms a rigid segment stabilized by uniquely extensive inter-repeat contacts mediated by unusually long helices in SR8 and SR9. Using SAXS we show that in solution the SR3-SR6 and SR7-SR9 regions are rod-like segments and that SR3-SR9 of plectin has an extended shape with a small central kink. Other plakins, such as bullous pemphigoid antigen 1 and microtubule and actin cross-linking factor 1, are likely to have similar extended plakin domains. In contrast, desmoplakin has a two-segment structure with a central flexible hinge. The continuous versus segmented structures of the plakin domains of plectin and desmoplakin give insight into how different plakins might respond to tension and transmit mechanical signals.


Assuntos
Plectina/química , Cristalografia por Raios X , Humanos , Plectina/genética , Domínios Proteicos
7.
J Ind Microbiol Biotechnol ; 44(4-5): 659-665, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27696023

RESUMO

Riboflavin (vitamin B2) is an essential nutrient for humans and animals that must be obtained from the diet. To ensure an optimal supply, riboflavin is used on a large scale as additive in the food and feed industries. Here, we describe a historical overview of the industrial process of riboflavin production starting from its discovery and the need to produce the vitamin in bulk at prices that would allow for their use in human and animal nutrition. Riboflavin was produced industrially by chemical synthesis for many decades. At present, the development of economical and eco-efficient fermentation processes, which are mainly based on Bacillus subtilis and Ashbya gossypii strains, has replaced the synthetic process at industrial scale. A detailed account is given of the development of the riboflavin overproducer strains as well as future prospects for its improvement.


Assuntos
Fermentação , Riboflavina/biossíntese , Animais , Bacillus subtilis/metabolismo , Eremothecium/metabolismo , História do Século XX , História do Século XXI , Humanos , Riboflavina/síntese química , Riboflavina/história
8.
Nat Methods ; 10(11): 1099-101, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24037245

RESUMO

We describe an algorithm for phasing protein crystal X-ray diffraction data that identifies, retrieves, refines and exploits general tertiary structural information from small fragments available in the Protein Data Bank. The algorithm successfully phased, through unspecific molecular replacement combined with density modification, all-helical, mixed alpha-beta, and all-beta protein structures. The method is available as a software implementation: Borges.


Assuntos
Cristalografia/métodos , Dobramento de Proteína , Estrutura Terciária de Proteína , Algoritmos , Bases de Dados de Proteínas , Modelos Moleculares
9.
Biotechnol Bioeng ; 113(9): 2060-3, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26927228

RESUMO

Inosine is a nucleoside with growing biotechnological interest due to its recently attributed beneficial health effects and as a convenient precursor of the umami flavor. At present, most of the industrial inosine production relies on bacterial fermentations. In this work, we have metabolically engineered the filamentous fungus Ashbya gossypii to obtain strains able to excrete high amounts of inosine to the culture medium. We report that the disruption of only two key genes of the purine biosynthetic pathway efficiently redirect the metabolic flux, increasing 200-fold the excretion of inosine with respect to the wild type, up to 2.2 g/L. These results allow us to propose A. gossypii as a convenient candidate for large-scale nucleoside production, especially in view of the several advantages that Ashbya has with respect to the bacterial systems used at present for the industrial production of this food additive. Biotechnol. Bioeng. 2016;113: 2060-2063. © 2016 Wiley Periodicals, Inc.


Assuntos
Eremothecium/genética , Eremothecium/metabolismo , Inosina/metabolismo , Engenharia Metabólica/métodos , Meios de Cultura/química , Meios de Cultura/metabolismo , Fermentação , Inosina/análise
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 969-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849406

RESUMO

Integrin α6ß4 is a major component of hemidesmosomes that mediate the stable anchorage of epithelial cells to the underlying basement membrane. Integrin α6ß4 has also been implicated in cell proliferation and migration and in carcinoma progression. The third and fourth fibronectin type III domains (FnIII-3,4) of integrin ß4 mediate binding to the hemidesmosomal proteins BPAG1e and BPAG2, and participate in signalling. Here, it is demonstrated that X-ray crystallography, small-angle X-ray scattering and double electron-electron resonance (DEER) complement each other to solve the structure of the FnIII-3,4 region. The crystal structures of the individual FnIII-3 and FnIII-4 domains were solved and the relative arrangement of the FnIII domains was elucidated by combining DEER with site-directed spin labelling. Multiple structures of the interdomain linker were modelled by Monte Carlo methods complying with DEER constraints, and the final structures were selected against experimental scattering data. FnIII-3,4 has a compact and cambered flat structure with an evolutionary conserved surface that is likely to correspond to a protein-interaction site. Finally, this hybrid method is of general application for the study of other macromolecules and complexes.


Assuntos
Fibronectinas/química , Integrina beta4/química , Sequência de Aminoácidos , Cristalografia por Raios X , Fibronectinas/metabolismo , Humanos , Integrina beta4/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Difração de Raios X
11.
Microb Cell Fact ; 14: 58, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25889888

RESUMO

BACKGROUND: Inosine and guanosine monophosphate nucleotides are convenient sources of the umami flavor, with attributed beneficial health effects that have renewed commercial interest in nucleotide fermentations. Accordingly, several bacterial strains that excrete high levels of inosine and guanosine nucleosides are currently used in the food industry for this purpose. RESULTS: In the present study, we show that the filamentous fungus Ashbya gossypii, a natural riboflavin overproducer, excretes high amounts of inosine and guanosine nucleosides to the culture medium. Following a rational metabolic engineering approach of the de novo purine nucleotide biosynthetic pathway, we increased the excreted levels of inosine up to 27-fold. CONCLUSIONS: We generated Ashbya gossypii strains with improved production titers of inosine and guanosine. Our results point to Ashbya gossypii as the first eukaryotic microorganism representing a promising candidate, susceptible to further manipulation, for industrial nucleoside fermentation.


Assuntos
Eremothecium/metabolismo , Guanosina/biossíntese , Inosina/biossíntese , Engenharia Metabólica/métodos , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Eremothecium/enzimologia , Eremothecium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Mutação , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Purinas/biossíntese , Reprodutibilidade dos Testes , Fatores de Tempo
12.
Appl Microbiol Biotechnol ; 99(22): 9577-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26150243

RESUMO

Guanine nucleotides are the precursors of essential biomolecules including nucleic acids and vitamins such as riboflavin. The enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the ratelimiting step in the guanine nucleotide de novo biosynthetic pathway and plays a key role in controlling the cellular nucleotide pools. Thus, IMPDH is an important metabolic bottleneck in the guanine nucleotide synthesis, susceptible of manipulation by means of metabolic engineering approaches. Herein, we report the functional and structural characterization of the IMPDH enzyme from the industrial fungus Ashbya gossypii. Our data show that the overexpression of the IMPDH gene increases the metabolic flux through the guanine pathway and ultimately enhances 40 % riboflavin production with respect to the wild type. Also, IMPDH disruption results in a 100-fold increase of inosine excretion to the culture media. Our results contribute to the developing metabolic engineering toolbox aiming at improving the production of metabolites with biotechnological interest in A. gossypii.


Assuntos
Eremothecium/enzimologia , Eremothecium/metabolismo , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Engenharia Metabólica , Riboflavina/biossíntese , Eremothecium/genética , Expressão Gênica , Análise do Fluxo Metabólico
13.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323936

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in guanosine triphosphate (GTP) synthesis and assembles into filaments in cells, which desensitizes the enzyme to feedback inhibition and boosts nucleotide production. The vertebrate retina expresses two splice variants IMPDH1(546) and IMPDH1(595). In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of S477 phosphorylation. The S477D mutation resensitized both variants to GTP inhibition but only blocked assembly of IMPDH1(595) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of a high-activity assembly interface, still allowing assembly of low-activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, S477 phosphorylation acts as a mechanism for downregulating retinal GTP synthesis in the dark when nucleotide turnover is decreased.


Assuntos
Citoesqueleto , Guanosina Trifosfato , IMP Desidrogenase , Retina , Animais , Bovinos , Guanosina Trifosfato/biossíntese , Nucleotídeos , Fosforilação , Retina/enzimologia , IMP Desidrogenase/metabolismo
14.
J Biol Chem ; 287(34): 28227-42, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22696216

RESUMO

Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Humanos , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/genética , Microtúbulos/química , Microtúbulos/genética , Análise Serial de Proteínas , Ligação Proteica , Schizosaccharomyces/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
15.
Microbiol Spectr ; 11(6): e0281123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909787

RESUMO

IMPORTANCE: Small proteins containing fewer than 70 amino acids, which were previously disregarded due to computational prediction and biochemical detection challenges, have gained increased attention in the scientific community in recent years. However, the number of functionally characterized small proteins, especially in archaea, is still limited. Here, by using biochemical and genetic approaches, we demonstrate a crucial role of the small protein sP36 in the nitrogen metabolism of M. mazei, which modulates the ammonium transporter AmtB1 according to nitrogen availability. This modulation might represent an ancient archaeal mechanism of AmtB1 inhibition, in contrast to the well-studied uridylylation-dependent regulation in bacteria.


Assuntos
Compostos de Amônio , Proteínas Arqueais , Methanosarcina/genética , Methanosarcina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo
16.
Structure ; 31(12): 1526-1534.e4, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37875114

RESUMO

IMP dehydrogenase and GMP reductase are enzymes from the same protein family with analogous structures and catalytic mechanisms that have gained attention because of their essential roles in nucleotide metabolism and as potential drug targets. This study focusses on GuaB3, a less-explored enzyme within this family. Phylogenetic analysis uncovers GuaB3's independent evolution from other members of the family and it predominantly occurs in Cyanobacteria. Within this group, GuaB3 functions as a unique IMP dehydrogenase, while its counterpart in Actinobacteria has a yet unknown function. Synechocystis sp. PCC6803 GuaB3 structures demonstrate differences in the active site compared to canonical IMP dehydrogenases, despite shared catalytic mechanisms. These findings highlight the essential role of GuaB3 in Cyanobacteria, provide insights into the diversity and evolution of the IMP dehydrogenase protein family, and reveal a distinctive characteristic in nucleotide metabolism, potentially aiding in combating harmful cyanobacterial blooms-a growing concern for humans and wildlife.


Assuntos
Cianobactérias , IMP Desidrogenase , Humanos , IMP Desidrogenase/química , IMP Desidrogenase/metabolismo , Filogenia , Catálise , Nucleotídeos/metabolismo , Cianobactérias/genética
17.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790411

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in de novo guanosine triphosphate (GTP) synthesis and is controlled by feedback inhibition and allosteric regulation. IMPDH assembles into micron-scale filaments in cells, which desensitizes the enzyme to feedback inhibition by GTP and boosts nucleotide production. The vertebrate retina expresses two tissue-specific splice variants IMPDH1(546) and IMPDH1(595). IMPDH1(546) filaments adopt high and low activity conformations, while IMPDH1(595) filaments maintain high activity. In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of phosphorylation in IMPDH1 variants. The S477D mutation re-sensitized both variants to GTP inhibition, but only blocked assembly of IMPDH1(595) filaments and not IMPDH1(546) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of the high activity assembly interface, still allowing assembly of low activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, phosphorylation at S477 acts as a mechanism for downregulating retinal GTP synthesis in the dark, when nucleotide turnover is decreased. Like IMPDH1, many other metabolic enzymes dynamically assemble filamentous polymers that allosterically regulate activity. Our work suggests that posttranslational modifications may be yet another layer of regulatory control to finely tune activity by modulating filament assembly in response to changing metabolic demands.

18.
Biochemistry ; 51(14): 3021-30, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22424550

RESUMO

End binding protein 1 (EB1) and cytoplasmic linker protein of 170 kDa (CLIP-170) are two well-studied microtubule plus-end-tracking proteins (+TIPs) that target growing microtubule plus ends in the form of comet tails and regulate microtubule dynamics. However, the mechanism by which they regulate microtubule dynamics is not well understood. Using full-length EB1 and a minimal functional fragment of CLIP-170 (ClipCG12), we found that EB1 and CLIP-170 cooperatively regulate microtubule dynamic instability at concentrations below which neither protein is effective. By use of small-angle X-ray scattering and analytical ultracentrifugation, we found that ClipCG12 adopts a largely extended conformation with two noninteracting CAP-Gly domains and that it formed a complex in solution with EB1. Using a reconstituted steady-state mammalian microtubule system, we found that at a low concentration of 250 nM, neither EB1 nor ClipCG12 individually modulated plus-end dynamic instability. Higher concentrations (up to 2 µM) of the two proteins individually did modulate dynamic instability, perhaps by a combination of effects at the tips and along the microtubule lengths. However, when low concentrations (250 nM) of EB1 and ClipCG12 were present together, the mixture modulated dynamic instability considerably. Using a pulsing strategy with [γ(32)P]GTP, we further found that unlike EB1 or ClipCG12 alone, the EB1-ClipCG12 mixture partially depleted the microtubule ends of stably bound (32)P(i). Together, our results suggest that EB1 and ClipCG12 act cooperatively to regulate microtubule dynamics. They further indicate that stabilization of microtubule plus ends by the EB1-ClipCG12 mixture may involve modification of an aspect of the stabilizing cap.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Proteínas de Neoplasias/química , Sítios de Ligação , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
19.
J Biol Chem ; 286(11): 9457-67, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21209096

RESUMO

The oxaloacetate decarboxylase primary Na(+) pump (OAD) is an essential membrane protein complex that functions in the citrate fermentation pathway of some pathogenic bacteria under anaerobic conditions. OAD contains three different subunits: Oad-α, a biotinylated extrinsic protein that catalyzes the α-ketodecarboxylation of oxaloacetate; Oad-γ, a structural bitopic membrane protein whose cytosolic tail (named as Oad-γ') binds tightly to Oad-α; and Oad-ß, a multispan transmembrane α-helical protein that constitutes the Na(+) channel. How OAD is organized structurally at the membrane and what the molecular determinants are that lead to an efficient energy coupling mechanism remain elusive. In the present work, we elucidate the stoichiometry of the native complex as well as the low resolution structure of the peripheral components of OAD (Oad-α and Oad-γ') by small angle x-ray scattering. Our results point to a quaternary assembly similar to the pyruvate carboxylase complex organization. Herein, we propose a model in which the association in pairs of Oad-α dimers, mediated by Oad-γ, results in the acquisition of a functional oligomeric state at the bacterial membrane. New structural insights for the conformational rearrangements associated with the carboxylbiotin transfer reaction within OAD are provided.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Proteínas de Membrana/química , Piruvato Carboxilase/química , Vibrio cholerae/enzimologia , Proteínas de Bactérias/genética , Carboxiliases/genética , Proteínas de Membrana/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Piruvato Carboxilase/genética , Vibrio cholerae/genética
20.
J Biol Chem ; 286(14): 12429-38, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21288893

RESUMO

Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress.


Assuntos
Plectina/química , Sequência de Aminoácidos , Cristalografia por Raios X , Citoesqueleto/química , Citoesqueleto/metabolismo , Humanos , Dados de Sequência Molecular , Plectina/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA