Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(8): e202400132, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38416537

RESUMO

A LigE-type beta-etherase enzyme from lignin-degrading Agrobacterium sp. has been identified, which assists degradation of polymeric lignins. Testing against lignin dimer model compounds revealed that it does not catalyse the previously reported reaction of Sphingobium SYK-6 LigE, but instead shows activity for a ß-5 phenylcoumaran lignin dimer. The reaction products did not contain glutathione, indicating a catalytic role for reduced glutathione in this enzyme. Three reaction products were identified: the major product was a cis-stilbene arising from C-C fragmentation involving loss of formaldehyde; two minor products were an alkene arising from elimination of glutathione, and an oxidised ketone, proposed to arise from reaction of an intermediate with molecular oxygen. Testing of the recombinant enzyme against a soda lignin revealed the formation of new signals by two-dimensional NMR analysis, whose chemical shifts are consistent with the formation of a stilbene unit in polymeric lignin.


Assuntos
Lignina , Estilbenos , Lignina/metabolismo , Éter , Agrobacterium/metabolismo , Éteres/química , Etil-Éteres , Glutationa/metabolismo
2.
Biotechnol Bioeng ; 121(4): 1366-1370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38079064

RESUMO

To improve the titre of lignin-derived pyridine-dicarboxylic acid (PDCA) products in engineered Rhodococcus jostii RHA1 strains, plasmid-based overexpression of seven endogenous and exogenous lignin-degrading genes was tested. Overexpression of endogenous multi-copper oxidases mcoA, mcoB, and mcoC was found to enhance 2,4-PDCA production by 2.5-, 1.4-, and 3.5-fold, respectively, while overexpression of dye-decolorizing peroxidase dypB was found to enhance titre by 1.4-fold, and overexpression of Streptomyces viridosporus laccase enhanced titre by 1.3-fold. The genomic context of the R. jostii mcoA gene suggests involvement in 4-hydroxybenzoate utilization, which was consistent with enhanced whole cell biotransformation of 4-hydroxybenzoate by R. jostii pTipQC2-mcoA. These data support the role of multi-copper oxidases in bacterial lignin degradation, and provide an opportunity to enhance titres of lignin-derived bioproducts.


Assuntos
Lignina , Parabenos , Rhodococcus , Lignina/metabolismo , Peroxidases/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Piridinas/metabolismo
3.
Appl Microbiol Biotechnol ; 107(13): 4165-4185, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212882

RESUMO

The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.


Assuntos
Vias Biossintéticas , Ácidos Cumáricos , Ácidos Cumáricos/metabolismo , Biomassa , Biocatálise , Engenharia Metabólica
4.
J Biol Chem ; 296: 100038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33158989

RESUMO

Microbial metabolism of carnitine to trimethylamine (TMA) in the gut can accelerate atherosclerosis and heart disease, and these TMA-producing enzymes are therefore important drug targets. Here, we report the first structures of the carnitine oxygenase CntA, an enzyme of the Rieske oxygenase family. CntA exists in a head-to-tail α3 trimeric structure. The two functional domains (the Rieske and the catalytic mononuclear iron domains) are located >40 Å apart in the same monomer but adjacent in two neighboring monomers. Structural determination of CntA and subsequent electron paramagnetic resonance measurements uncover the molecular basis of the so-called bridging glutamate (E205) residue in intersubunit electron transfer. The structures of the substrate-bound CntA help to define the substrate pocket. Importantly, a tyrosine residue (Y203) is essential for ligand recognition through a π-cation interaction with the quaternary ammonium group. This interaction between an aromatic residue and quaternary amine substrates allows us to delineate a subgroup of Rieske oxygenases (group V) from the prototype ring-hydroxylating Rieske oxygenases involved in bioremediation of aromatic pollutants in the environment. Furthermore, we report the discovery of the first known CntA inhibitors and solve the structure of CntA in complex with the inhibitor, demonstrating the pivotal role of Y203 through a π-π stacking interaction with the inhibitor. Our study provides the structural and molecular basis for future discovery of drugs targeting this TMA-producing enzyme in human gut.


Assuntos
Carnitina/metabolismo , Oxigenases de Função Mista/metabolismo , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/química , Conformação Proteica , Especificidade por Substrato
5.
Microb Cell Fact ; 20(1): 15, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468127

RESUMO

Genetic modification of Rhodococcus jostii RHA1 was carried out in order to optimise the production of pyridine-2,4-dicarboxylic acid and pyridine-2,5-dicarboxylic acid bioproducts from lignin or lignocellulose breakdown, via insertion of either the Sphingobium SYK-6 ligAB genes or Paenibacillus praA gene respectively. Insertion of inducible plasmid pTipQC2 expression vector containing either ligAB or praA genes into a ΔpcaHG R. jostii RHA1 gene deletion strain gave 2-threefold higher titres of PDCA production from lignocellulose (200-287 mg/L), compared to plasmid expression in wild-type R. jostii RHA1. The ligAB genes were inserted in place of the chromosomal pcaHG genes encoding protocatechuate 3,4-dioxygenase, under the control of inducible Picl or PnitA promoters, or a constitutive Ptpc5 promoter, producing 2,4-PDCA products using either wheat straw lignocellulose or commercial soda lignin as carbon source. Insertion of Amycolatopsis sp. 75iv2 dyp2 gene on a pTipQC2 expression plasmid led to enhanced titres of 2,4-PDCA products, due to enhanced rate of lignin degradation. Growth in minimal media containing wheat straw lignocellulose led to the production of 2,4-PDCA in 330 mg/L titre in 40 h, with > tenfold enhanced productivity, compared with plasmid-based expression of ligAB genes in wild-type R. jostii RHA1. Production of 2,4-PDCA was also observed using several different polymeric lignins as carbon sources, and a titre of 240 mg/L was observed using a commercially available soda lignin as feedstock.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Lignina/metabolismo , Engenharia Metabólica/métodos , Piridinas/metabolismo , Rhodococcus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Família Multigênica/genética , Regiões Promotoras Genéticas/genética , Protocatecoate-3,4-Dioxigenase/genética , Protocatecoate-3,4-Dioxigenase/metabolismo , Rhodococcus/genética
6.
Bioorg Med Chem ; 52: 116502, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808406

RESUMO

Translocase MraY is the target for bacteriophage ϕX174 lysis protein E, which interacts via a protein-protein interaction mediated by Phe-288 and Glu-287 of E. coli MraY, and an Arg-Trp-x-x-Trp motif on protein E, also found in several cationic antimicrobial peptides. Analogues of Arg-Trp-octyl ester, found previously to show antimicrobial activity, were tested for antimicrobial activity, with Lys-Trp-oct (MIC50P. fluorescens 5 µg/mL) and Arg-Trp-decyl ester (MIC50P. fluorescens 3 µg/mL) showing enhanced antimicrobial activity. Synthesis and testing of α-helix peptidomimetic analogues for this motif revealed improved antibacterial activity (MIC50E. coli 4-7 µg/mL) for analogues containing two aromatic substituents, mimicking the Arg-Trp-x-x-Trp motif, and MraY inhibition (IC50 140 µM) by one such peptidomimetic. Investigation of mechanism of action using the Alamar Blue membrane permeabilisation assay revealed bacteriostatic and bacteriocidal mechanisms in different members of this set of compounds, raising the possibility of more than one biological target. The observed antimicrobial activity and MraY inhibition shown by peptidomimetic compounds confirms that this site could be targeted by drug-like molecules.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Peptidomiméticos/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Estrutura-Atividade , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteínas Virais/metabolismo
7.
Angew Chem Int Ed Engl ; 60(9): 4529-4534, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33180358

RESUMO

Oxidation of quaternary ammonium substrate, carnitine by non-heme iron containing Acinetobacter baumannii (Ab) oxygenase CntA/reductase CntB is implicated in the onset of human cardiovascular disease. Herein, we develop a blue-light (365 nm) activation of NADH coupled to electron paramagnetic resonance (EPR) measurements to study electron transfer from the excited state of NADH to the oxidized, Rieske-type, [2Fe-2S]2+ cluster in the AbCntA oxygenase domain with and without the substrate, carnitine. Further electron transfer from one-electron reduced, Rieske-type [2Fe-2S]1+ center in AbCntA-WT to the mono-nuclear, non-heme iron center through the bridging glutamate E205 and subsequent catalysis occurs only in the presence of carnitine. The electron transfer process in the AbCntA-E205A mutant is severely affected, which likely accounts for the significant loss of catalytic activity in the AbCntA-E205A mutant. The NADH photo-activation coupled with EPR is broadly applicable to trap reactive intermediates at low temperature and creates a new method to characterize elusive intermediates in multiple redox-centre containing proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Carnitina/metabolismo , Luz , Microbiota , Oxirredutases/metabolismo , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/isolamento & purificação , Proteínas de Bactérias/genética , Carnitina/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Humanos , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mutagênese Sítio-Dirigida , NAD/química , Oxirredução , Oxirredutases/genética
8.
J Struct Biol ; 210(3): 107496, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32224091

RESUMO

An alpha/ beta hydrolase annotated as a putative salicylate esterase within the genome of a species of Paenibacillus previously identified from differential and selective growth on Kraft lignin was structurally and functionally characterised. Feruloyl esterases are key to the degradation of lignin in several bacterial species and although this activity was investigated, no such activity was observed. The crystal structure of the Paenibacillus esterase, here denoted as PnbE, was determined at 1.32 Å resolution, showing high similarity to Nicotiana tabacum salicylic acid binding protein 2 from the protein database. Structural similarities between these two structures across the core domains and key catalytic residues were observed, with superposition of catalytic residues giving an RMSD of 0.5 Å across equivalent Cα atoms. Conversely, the cap domains of PnbE and Nicotiana tabacum SABP2 showed greater divergence with decreased flexibility in the PnbE cap structure. Activity of PnbE as a putative methyl salicylate esterase was supported with binding studies showing affinity for salicylic acid and functional studies showing methyl salicylate esterase activity. We hypothesise that this activity could enrich Paenibacillus sp. within the rhizosphere by increasing salicylic acid concentrations within the soil.


Assuntos
Hidrolases/metabolismo , Nicotiana/enzimologia , Nicotiana/metabolismo , Paenibacillus/enzimologia , Paenibacillus/metabolismo , Hidrolases/genética , Paenibacillus/genética , Rizosfera , Ácido Salicílico/metabolismo , Nicotiana/genética
9.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32737130

RESUMO

Deletion of the pcaHG genes, encoding protocatechuate 3,4-dioxygenase in Rhodococcus jostii RHA1, gives a gene deletion strain still able to grow on protocatechuic acid as the sole carbon source, indicating a second degradation pathway for protocatechuic acid. Metabolite analysis of wild-type R. jostii RHA1 grown on medium containing vanillin or protocatechuic acid indicated the formation of hydroxyquinol (benzene-1,2,4-triol) as a downstream product. Gene cluster ro01857-ro01860 in Rhodococcus jostii RHA1 contains genes encoding hydroxyquinol 1,2-dioxygenase and maleylacetate reductase for degradation of hydroxyquinol but also putative mono-oxygenase (ro01860) and putative decarboxylase (ro01859) genes, and a similar gene cluster is found in the genome of lignin-degrading Agrobacterium species. Recombinant R. jostii mono-oxygenase and decarboxylase enzymes in combination were found to convert protocatechuic acid to hydroxyquinol. Hence, an alternative pathway for degradation of protocatechuic acid via oxidative decarboxylation to hydroxyquinol is proposed.IMPORTANCE There is a well-established paradigm for degradation of protocatechuic acid via the ß-ketoadipate pathway in a range of soil bacteria. In this study, we have found the existence of a second pathway for degradation of protocatechuic acid in Rhodococcus jostii RHA1, via hydroxyquinol (benzene-1,2,4-triol), which establishes a metabolic link between protocatechuic acid and hydroxyquinol. The presence of this pathway in a lignin-degrading Agrobacterium sp. strain suggests the involvement of the hydroxyquinol pathway in the metabolism of degraded lignin fragments.


Assuntos
Agrobacterium/metabolismo , Proteínas de Bactérias/genética , Hidroquinonas/metabolismo , Hidroxibenzoatos/metabolismo , Lignina/metabolismo , Rhodococcus/metabolismo , Proteínas de Bactérias/metabolismo , Deleção de Genes , Redes e Vias Metabólicas , Família Multigênica
10.
Microb Ecol ; 80(4): 885-896, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32572536

RESUMO

An exploration of the ligninolytic potential of lignocellulolytic microbial consortia can improve our understanding of the eco-enzymology of lignin conversion in nature. In this study, we aimed to detect enriched lignin-transforming enzymes on metagenomes from three soil-derived microbial consortia that were cultivated on "pre-digested" plant biomass (wheat straw, WS1-M; switchgrass, SG-M; and corn stover, CS-M). Of 60 selected enzyme-encoding genes putatively involved in lignin catabolism, 20 genes were significantly abundant in WS1-M, CS-M, and/or SG-M consortia compared with the initial forest soil inoculum metagenome (FS1). These genes could be involved in lignin oxidation (e.g., superoxide dismutases), oxidative stress responses (e.g., catalase/peroxidases), generation of protocatechuate (e.g., vanAB genes), catabolism of gentisate, catechol and 3-phenylpropionic acid (e.g., gentisate 1,2-dioxygenases, muconate cycloisomerases, and hcaAB genes), the beta-ketoadipate pathway (e.g., pcaIJ genes), and tolerance to lignocellulose-derived inhibitors (e.g., thymidylate synthases). The taxonomic affiliation of 22 selected lignin-transforming enzymes from WS1-M and CS-M consortia metagenomes revealed that Pseudomonadaceae, Alcaligenaceae, Sphingomonadaceae, Caulobacteraceae, Comamonadaceae, and Xanthomonadaceae are the key bacterial families in the catabolism of lignin. A predictive "model" was sketched out, where each microbial population has the potential to metabolize an array of aromatic compounds through different pathways, suggesting that lignin catabolism can follow a "task division" strategy. Here, we have established an association between functions and taxonomy, allowing a better understanding of lignin transformations in soil-derived lignocellulolytic microbial consortia, and pinpointing some bacterial taxa and catabolic genes as ligninolytic trait-markers.


Assuntos
Bactérias/enzimologia , Lignina/metabolismo , Metagenoma , Consórcios Microbianos , Microbiologia do Solo , Bactérias/genética , Biomassa , Metagenômica , Panicum/microbiologia , Triticum/microbiologia , Zea mays/microbiologia
11.
Appl Microbiol Biotechnol ; 104(8): 3305-3320, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32088760

RESUMO

Although several bacterial lignin-oxidising enzymes have been discovered in recent years, it is not yet clear whether different lignin-degrading bacteria use similar mechanisms for lignin oxidation and degradation of lignin fragments. Genome sequences of 13 bacterial lignin-oxidising bacteria, including new genome sequences for Microbacterium phyllosphaerae and Agrobacterium sp., were analysed for the presence of lignin-oxidising enzymes and aromatic degradation gene clusters that could be used to metabolise the products of lignin degradation. Ten bacterial genomes contain DyP-type peroxidases, and ten bacterial strains contain putative multi-copper oxidases (MCOs), both known to have activity for lignin oxidation. Only one strain lacks both MCOs and DyP-type peroxidase genes. Eleven bacterial genomes contain aromatic degradation gene clusters, of which ten contain the central ß-ketoadipate pathway, with variable numbers and types of degradation clusters for other aromatic substrates. Hence, there appear to be diverse metabolic strategies used for lignin oxidation in bacteria, while the ß-ketoadipate pathway appears to be the most common route for aromatic metabolism in lignin-degrading bacteria.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Genoma Bacteriano , Lignina/metabolismo , Agrobacterium/enzimologia , Agrobacterium/genética , Proteínas de Bactérias/metabolismo , Fenômenos Bioquímicos , Genômica , Engenharia Metabólica , Microbacterium/enzimologia , Microbacterium/genética , Oxirredução , Oxirredutases/metabolismo , Peroxidases/metabolismo
12.
J Ind Microbiol Biotechnol ; 47(1): 145-154, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31734813

RESUMO

Putative iron-reductase (IR) genes from Serpula lacrymans with similarity to the conserved iron-binding domains of cellobiose dehydrogenase (CDH) enzymes have been identified. These genes were cloned and expressed to functionally characterize their activity and role in the decomposition of lignocellulose. The results show that IR1 and IR2 recombinant enzymes have the ability to depolymerize both lignin and cellulose, are capable of the reduction of ferric iron to the ferrous form, and are capable of the degradation of nitrated lignin. Expression of these genes during wheat straw solid-state fermentation was shown to correlate with the release of compounds associated with lignin decomposition. The results suggest that both IR enzymes mediate a non-enzymatic depolymerisation of lignocellulose and highlight the potential of chelator-mediated Fenton systems in the industrial pre-treatment of biomass.


Assuntos
Basidiomycota/metabolismo , FMN Redutase/metabolismo , Lignina/metabolismo , Basidiomycota/genética , Fenômenos Bioquímicos , Fermentação , Triticum/metabolismo
13.
Biochemistry ; 58(52): 5281-5293, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30946572

RESUMO

A thiamine diphosphate-dependent enzyme annotated as a benzoylformate decarboxylase is encoded by gene cluster ro02984-ro02986 in Rhodococcus jostii RHA1 previously shown to generate vanillin and 4-hydroxybenzaldehyde from lignin oxidation, and a closely related gene cluster is also found in the genome of Pseudomonas fluorescens Pf-5. Two hypotheses for possible pathways involving a thiamine diphosphate-dependent cleavage, either C-C cleavage of a ketol or diketone aryl C3 substrate or decarboxylation of an aryl C2 substrate, were investigated by expression and purification of the recombinant enzymes and expression of dehydrogenase and oxidase enzymes also found in the gene clusters. The ThDP-dependent enzymes showed no activity for cleavage of aryl C3 ketol or diketone substrates but showed activity for decarboxylation of benzoylformate and 4-hydroxybenzoylformate. A flavin-dependent oxidase encoded by gene ro02984 was found to oxidize either mandelic acid or phenylglyoxal. The crystal structure of the P. fluorescens decarboxylase enzyme was determined at 1.69 Å resolution, showing similarity to structures of known benzoylformate decarboxylase enzymes. The P. fluorescens decarboxylase enzyme showed enhanced carboligase activity between vanillin and acetaldehyde, rationalized by the presence of alanine versus serine at residue 73 in the enzyme active site, which was investigated further by site-directed mutagenesis of this residue. A hypothesis for a pathway for degradation of aryl C2 fragments arising from oxidative cleavage of phenylcoumaran and diarylpropane structures in lignin is proposed.


Assuntos
Carboxiliases/metabolismo , Lignina/metabolismo , Pseudomonas fluorescens/enzimologia , Rhodococcus/enzimologia , Tiamina Pirofosfato/metabolismo , Carboxiliases/química , Carboxiliases/genética , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Lignina/química , Modelos Moleculares , Família Multigênica/genética , Pseudomonas fluorescens/genética , Rhodococcus/genética
14.
Arch Biochem Biophys ; 660: 97-107, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30347180

RESUMO

CopA is a protein formed as part of a copper resistance operon in Pseudomonas syringae pv tomato, but CopA has also been identified from gene library screening as a potential lignin-oxidising enzyme. Few bacterial homologues for bacterial multi-copper laccases have been identified that can assist in lignin degradation. Bioinformatic analysis revealed that copA and copC genes were found in the genomes of bacterial strains capable of lignin oxidation. In this study, CopA enzymes from bacterial strains with lignin oxidation activity, Pseudomonas putida and P. fluorescens, were heterologously expressed and characterised kinetically, and expression of bacterial CopC proteins was also investigated. Purified CopA enzymes were dependent upon exogenous copper (II) ions for activity when expressed under fully aerated conditions, however after expression under microaerobic conditions with copper reconstitution, the activity was independent of copper addition. The CopA enzymes showed activity towards the laccase substrates 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS); syringaldazine (SGZ); guaiacol; 2,6-dimethoxyphenol (DMP) and 2,4-dichlorophenol (DCP). Moreover, CopA proteins were able to oxidise the lignin model compounds guaiacylglycerol-beta-guaiacyl (GGE) and 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-dicarboxybiphenyl (DDVA), giving oxidised dimerised products; and they were active towards Ca-lignosulfonate, giving vanillic acid as product. A double gene deletion of copA-I and copA-II genes in Pseudomonas putida KT2440 was constructed, and this mutant showed diminished growth capability on different small aromatic compounds related with lignin degradation, when copper salts were present in the media.


Assuntos
Proteínas de Bactérias/metabolismo , Lignina/metabolismo , Pseudomonas fluorescens/enzimologia , Pseudomonas putida/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Deleção de Genes , Cinética , Oxirredução
15.
Biochem Biophys Res Commun ; 482(1): 57-61, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816454

RESUMO

A significant problem in the oxidative breakdown of lignin is the tendency of phenolic radical fragments to re-polymerise to form higher molecular weight species. In this paper we identify an extracellular flavin-dependent dehydrolipoamide dehydrogenase from Thermobifida fusca that prevents oxidative dimerization of a dimeric lignin model compound, which could be used as an accessory enzyme for lignin depolymerisation.


Assuntos
Actinobacteria/enzimologia , Di-Hidrolipoamida Desidrogenase/metabolismo , Líquido Extracelular/metabolismo , Lignina/metabolismo , Fragmentos de Peptídeos/metabolismo , Flavoproteínas/metabolismo , Multimerização Proteica
16.
Biotechnol Appl Biochem ; 64(6): 803-809, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27696534

RESUMO

An extracellular esterase gene estK was identified in Pseudomonas putida mt-2 and overexpressed at high levels in Escherichia coli. The recombinant EstK enzyme was purified and characterized kinetically against p-nitrophenyl ester and other aryl-alkyl ester substrates and found to be selective for hydrolysis of acetyl ester substrates with high activity for p-nitrophenyl acetate (kcat 5.5 Sec-1 , KM 285 µM). Recombinant EstK was found to catalyze deacetylation of acetylated beech xylan, indicating a possible in vivo function for this enzyme, and partial deacetylation of a synthetic polymer (poly(vinylacetate)). EstK was found to catalyze enantioselective hydrolysis of racemic 1-phenylethyl acetate, generating 1R-phenylethanol with an enantiomeric excess of 80.4%.


Assuntos
Esterases/metabolismo , Polivinil/metabolismo , Pseudomonas putida/enzimologia , Xilanos/metabolismo , Acetilação , Biocatálise , Esterases/química , Esterases/isolamento & purificação , Hidrólise , Cinética , Estrutura Molecular , Polivinil/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Xilanos/química
17.
Proc Natl Acad Sci U S A ; 111(11): 4268-73, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591617

RESUMO

Dietary intake of L-carnitine can promote cardiovascular diseases in humans through microbial production of trimethylamine (TMA) and its subsequent oxidation to trimethylamine N-oxide by hepatic flavin-containing monooxygenases. Although our microbiota are responsible for TMA formation from carnitine, the underpinning molecular and biochemical mechanisms remain unclear. In this study, using bioinformatics approaches, we first identified a two-component Rieske-type oxygenase/reductase (CntAB) and associated gene cluster proposed to be involved in carnitine metabolism in representative genomes of the human microbiota. CntA belongs to a group of previously uncharacterized Rieske-type proteins and has an unusual "bridging" glutamate but not the aspartate residue, which is believed to facilitate intersubunit electron transfer between the Rieske center and the catalytic mononuclear iron center. Using Acinetobacter baumannii as the model, we then demonstrate that cntAB is essential in carnitine degradation to TMA. Heterologous overexpression of cntAB enables Escherichia coli to produce TMA, confirming that these genes are sufficient in TMA formation. Site-directed mutagenesis experiments have confirmed that this unusual "bridging glutamate" residue in CntA is essential in catalysis and neither mutant (E205D, E205A) is able to produce TMA. Taken together, the data in our study reveal the molecular and biochemical mechanisms underpinning carnitine metabolism to TMA in human microbiota and assign the role of this novel group of Rieske-type proteins in microbial carnitine metabolism.


Assuntos
Carnitina/metabolismo , Microbiota/genética , Oxirredutases/metabolismo , Oxigenases/metabolismo , Acinetobacter baumannii/metabolismo , Cromatografia por Troca Iônica , Biologia Computacional , Escherichia coli , Humanos , Metilaminas/metabolismo , Mutagênese Sítio-Dirigida , Espectrofotometria Ultravioleta
18.
Proc Natl Acad Sci U S A ; 111(13): E1300-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639533

RESUMO

In plants, continuous formation of lateral roots (LRs) facilitates efficient exploration of the soil environment. Roots can maximize developmental capacity in variable environmental conditions through establishment of sites competent to form LRs. This LR prepattern is established by a periodic oscillation in gene expression near the root tip. The spatial distribution of competent (prebranch) sites results from the interplay between this periodic process and primary root growth; yet, much about this oscillatory process and the formation of prebranch sites remains unknown. We find that disruption of carotenoid biosynthesis results in seedlings with very few LRs. Carotenoids are further required for the output of the LR clock because inhibition of carotenoid synthesis also results in fewer sites competent to form LRs. Genetic analyses and a carotenoid cleavage inhibitor indicate that an apocarotenoid, distinct from abscisic acid or strigolactone, is specifically required for LR formation. Expression of a key carotenoid biosynthesis gene occurs in a spatially specific pattern along the root's axis, suggesting spatial regulation of carotenoid synthesis. These results indicate that developmental prepatterning of LRs requires an uncharacterized carotenoid-derived molecule. We propose that this molecule functions non-cell-autonomously in establishment of the LR prepattern.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Carotenoides/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bioensaio , Vias Biossintéticas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Lactonas/metabolismo , Luciferases/metabolismo , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , beta Caroteno/metabolismo
19.
Arch Biochem Biophys ; 594: 54-60, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26901432

RESUMO

A Dyp-type peroxidase enzyme from thermophilic cellulose degrader Thermobifida fusca (TfuDyP) was investigated for catalytic ability towards lignin oxidation. TfuDyP was characterised kinetically against a range of phenolic substrates, and a compound I reaction intermediate was observed via pre-steady state kinetic analysis at λmax 404 nm. TfuDyP showed reactivity towards Kraft lignin, and was found to oxidise a ß-aryl ether lignin model compound, forming an oxidised dimer. A crystal structure of TfuDyP was determined, to 1.8 Å resolution, which was found to contain a diatomic oxygen ligand bound to the heme centre, positioned close to active site residues Asp-203 and Arg-315. The structure contains two channels providing access to the heme cofactor for organic substrates and hydrogen peroxide. Site-directed mutant D203A showed no activity towards phenolic substrates, but reduced activity towards ABTS, while mutant R315Q showed no activity towards phenolic substrates, nor ABTS.


Assuntos
Actinobacteria/enzimologia , Lignina/metabolismo , Peroxidase/química , Peroxidase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Peroxidase/genética
20.
Bioorg Med Chem ; 24(24): 6340-6347, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27021004

RESUMO

This review covers recent developments in the inhibition of translocase MraY and related phospho-GlcNAc transferases WecA and TagO, and insight into the inhibition and catalytic mechanism of this class of integral membrane proteins from the structure of Aquifex aeolicus MraY. Recent studies have also identified a protein-protein interaction site in Escherichia coli MraY, that is targeted by bacteriophage ϕX174 lysis protein E, and also by cationic antimicrobial peptides containing Arg-Trp close to their N- or C-termini.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Transferases/antagonistas & inibidores , Proteínas Virais/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/química , Nucleosídeos/química , Nucleosídeos/farmacologia , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA