Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Phys Rev Lett ; 133(12): 125001, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39373451

RESUMO

The onset and development of electron-positron cascade in a standing wave formed by multiple colliding laser pulses requires tight focusing in order to achieve the maximum laser intensity. There, steep spatiotemporal gradients in the laser intensity expel seed particles from the high-intensity region and thus can prevent the onset of a cascade. We show that radially polarized laser pulses ensure that the seed electrons are present at the focal plane at the moment of the highest amplitude even in the case of extreme focusing. This feature reduces the required laser power for the onset of a cascade 100 times (80 times) compared to circularly (linearly) polarized laser pulses having the same focal spot radius and duration.

2.
Phys Rev Lett ; 131(20): 205001, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039469

RESUMO

The interaction of intense laser pulses with plasma mirrors has demonstrated the ability to generate high-order harmonics, producing a bright source of extreme ultraviolet (XUV) radiation and attosecond pulses. Here, we report an unexpected transition in this process. We show that the loss of spatiotemporal coherence in the reflected high harmonics can lead to a new regime of highly efficient coherent XUV generation, with an extraordinary property where the radiation is directionally anomalous, propagating parallel to the mirror surface. With analytical calculations and numerical particle-in-cell simulations, we discover that the radiation emission is due to laser-driven oscillations of relativistic electron nanobunches that originate from a plasma surface instability.

3.
Phys Rev Lett ; 122(25): 254801, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347867

RESUMO

As an alternative to Compton backscattering and bremsstrahlung, the process of colliding high-energy electron beams with strong laser fields can more efficiently provide both a cleaner and brighter source of photons in the multi-GeV range for fundamental studies in nuclear and quark-gluon physics. In order to favor the emission of high-energy quanta and minimize their decay into electron-positron pairs, the fields must not only be sufficiently strong, but also well localized. We here examine these aspects and develop the concept of a laser-particle collider tailored for high-energy photon generation. We show that the use of multiple colliding laser pulses with 0.4 PW of total power is capable of converting more than 18% of multi-GeV electrons passing through the high-field region into photons, each of which carries more than half of the electron initial energy.

4.
Phys Rev Lett ; 122(8): 084801, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932604

RESUMO

Guiding of relativistically intense laser pulses with peak power of 0.85 PW over 15 diffraction lengths was demonstrated by increasing the focusing strength of a capillary discharge waveguide using laser inverse bremsstrahlung heating. This allowed for the production of electron beams with quasimonoenergetic peaks up to 7.8 GeV, double the energy that was previously demonstrated. Charge was 5 pC at 7.8 GeV and up to 62 pC in 6 GeV peaks, and typical beam divergence was 0.2 mrad.

5.
Phys Rev Lett ; 118(15): 154803, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28452504

RESUMO

The interaction of charged particles and photons with intense electromagnetic fields gives rise to multiphoton Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multiphoton nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude a_{0}∼10^{3} and electron bunches with charges of the order of 10 nC.

6.
Phys Rev Lett ; 114(10): 105003, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815939

RESUMO

Radiation pressure acceleration is a highly efficient mechanism of laser-driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

7.
Phys Rev Lett ; 115(18): 184802, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26565471

RESUMO

Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

8.
Phys Rev Lett ; 113(24): 245002, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541775

RESUMO

Multi-GeV electron beams with energy up to 4.2 GeV, 6% rms energy spread, 6 pC charge, and 0.3 mrad rms divergence have been produced from a 9-cm-long capillary discharge waveguide with a plasma density of ≈7×10¹7 cm⁻³, powered by laser pulses with peak power up to 0.3 PW. Preformed plasma waveguides allow the use of lower laser power compared to unguided plasma structures to achieve the same electron beam energy. A detailed comparison between experiment and simulation indicates the sensitivity in this regime of the guiding and acceleration in the plasma structure to input intensity, density, and near-field laser mode profile.

9.
Phys Rev E ; 109(2): L023202, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491701

RESUMO

When a refractive index modulation of dispersive medium moves at the speed of light in vacuum, an incident electromagnetic wave, depending on its frequency, either is totally transmitted with a phase shift, or forms a standing wave, or is totally reflected with the frequency upshift. The luminal mirror converts a short incident pulse into a wave packet with an infinitely growing in time local frequency near the interface and with an energy spectral density that asymptotically is the inverse square of frequency. If the modulation disappears, the high frequency radiation is released.

10.
Phys Rev E ; 109(6-2): 065204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020949

RESUMO

We use analytical methods and particle-in-cell simulation to investigate the origin of electrons accelerated by the process of direct laser acceleration driven by high-power laser pulses in preformed narrow cylindrical plasma channels. The simulation shows that the majority of accelerated electrons are originally located along the interface between the channel wall and the channel interior. The analytical model based on the electron hydrodynamics illustrates the underlying physical mechanism of the release of electrons from the channel wall when irradiated by an intense laser, the subsequent electron dynamics, and the corresponding evolution of the channel density profile. The quantitative predictions of the total charge of released electrons and the average electron density inside the channel are validated by comparison with the simulation results.

11.
Phys Med Biol ; 68(22)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797651

RESUMO

Ultra-short electron beams are used as ultra-fast radiation source for radiobiology experiments aiming at very high energy electron beams (VHEE) radiotherapy with very high dose rates. Laser plasma accelerators are capable of producing electron beams as short as 1 fs and with tunable energy from few MeV up to multi-GeV with compact footprint. This makes them an attractive source for applications in different fields, where the ultra-short (fs) duration plays an important role. The time dynamics of the dose deposited by electron beams with energies in the range 50-250 MeV have been studied and the results are presented here. The results set a quantitative limit to the maximum dose rate at which the electron beams can impart dose.


Assuntos
Elétrons , Aceleradores de Partículas , Método de Monte Carlo , Lasers , Radioterapia de Alta Energia , Dosagem Radioterapêutica , Radiometria/métodos
12.
Phys Rev Lett ; 108(13): 135004, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540709

RESUMO

We demonstrate a new high-order harmonic generation mechanism reaching the "water window" spectral region in experiments with multiterawatt femtosecond lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving µJ/sr pulses. Harmonics are collectively emitted by an oscillating electron spike formed at the joint of the boundaries of a cavity and bow wave created by a relativistically self-focusing laser in underdense plasma. The spike sharpness and stability are explained by catastrophe theory. The mechanism is corroborated by particle-in-cell simulations.

13.
Phys Rev Lett ; 107(6): 065003, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902332

RESUMO

By using temporal pulse shaping of high-contrast, short pulse laser interactions with solid density targets at intensities of 2 × 10(21) W cm(-2) at a 45° incident angle, we show that it is possible to reproducibly generate quasimonoenergetic proton and ion energy spectra. The presence of a short pulse prepulse 33 ps prior to the main pulse produced proton spectra with an energy spread between 25% and 60% (ΔE/E) with energy of several MeV, with light ions becoming quasimonoenergetic for 50 nm targets. When the prepulse was removed, the energy spectra was broad. Numerical simulations suggest that expansion of the rear-side contaminant layer allowed for density conditions that prevented the protons from being screened from the sheath field, thus providing a low energy cutoff in the observed spectra normal to the target surface.

14.
Phys Rev E ; 104(1-2): 015203, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412282

RESUMO

We present a regime where an ultraintense laser pulse interacting with a foil target results in high γ-photon conversion efficiency, obtained via three-dimensional quantum-electrodynamics particle-in-cell simulations. A single-cycle laser pulse is used under the tight-focusing condition for obtaining the λ^{3} regime. The simulations employ a radially polarized laser as it results in higher γ-photon conversion efficiency compared to both azimuthal and linear polarizations. A significant fraction of the laser energy is transferred to positrons, while a part of the electromagnetic wave escapes the target as attosecond single-cycle pulses.

15.
Phys Rev Lett ; 104(22): 220404, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20867152

RESUMO

The scheme of a simultaneous multiple pulse focusing on one spot naturally arises from the structural features of projected new laser systems, such as the Extreme Light Infrastructure (ELI) and High Power laser Energy Research (HiPER). It is shown that the multiple pulse configuration is beneficial for observing e+ e- pair production from a vacuum under the action of sufficiently strong electromagnetic fields. The field of focused pulses is described using a realistic three-dimensional model based on an exact solution of the Maxwell equations. The e+ e- pair production threshold in terms of electromagnetic field energy can be substantially lowered if, instead of one or even two colliding pulses, multiple pulses are focused on one spot. The multiple pulse interaction geometry gives rise to subwavelength field features in the focal region. These features result in the production of extremely short e+ e- bunches.

16.
Phys Rev Lett ; 104(13): 135003, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481890

RESUMO

The energy of ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region resulting in an increase in the ion energy and in the ion longitudinal velocity. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in unlimited ion energy gain.

17.
Phys Rev Lett ; 105(3): 034801, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867770

RESUMO

Stimulated Raman side scattering of an ultrashort high power laser pulse is studied in experiments on laser wakefield acceleration. Experiments and simulations reveal that stimulated Raman side scattering occurs at the beginning of the interaction, that it contributes to the evolution of the pulse prior to wakefield formation, and also that it affects the quality of electron beams generated. The relativistic shift of the plasma frequency is measured.

18.
Phys Rev Lett ; 105(17): 175002, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21231052

RESUMO

Slowly evolving, regularly spaced patterns have been observed in proton projection images of plasma channels drilled by intense (≳10¹9 W cm⁻²) short (∼1 ps) laser pulses propagating in an ionized gas jet. The nature and geometry of the electromagnetic fields generating such patterns have been inferred by simulating the laser-plasma interaction and the following plasma evolution with a two-dimensional particle-in-cell code and the probe proton deflections by particle tracing. The analysis suggests the formation of rows of magnetized soliton remnants, with a quasistatic magnetic field associated with vortexlike electron currents resembling those of magnetic vortices.

19.
Phys Rev Lett ; 104(21): 215004, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20867110

RESUMO

Bright Ar quasimonochromatic K-shell x ray with very little background has been generated using an Ar clustering gas jet target irradiated with a 30 fs ultrahigh-contrast laser, with a measured flux of 2.2×10(11) photons/J into 4π. This intense x-ray source critically depends on the laser contrast and intensity. The optimization of source output with interaction length is addressed. Simulations point to a nonlinear resonant mechanism of electron heating during the early stage of laser interaction, resulting in enhanced x-ray emission. The x-ray pulse duration is expected to be only 10 fs, opening the possibility for single-shot ultrafast keV x-ray imaging applications.

20.
Phys Rev Lett ; 104(13): 134801, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481887

RESUMO

Electron density bubbles--wake structures generated in plasma of density n(e) approximately 10(19) cm(-3) by the light pressure of intense ultrashort laser pulses--are shown to reshape weak copropagating probe pulses into optical "bullets." The bullets are reconstructed using frequency-domain interferometric techniques in order to visualize bubble formation. Bullets are confined in three dimensions to plasma-wavelength size, and exhibit higher intensity, broader spectrum and flatter temporal phase than surrounding probe light, evidence of their compression by the bubble. Bullets observed at 0.8 approximately < n(e) approximately < 1.2x10(19) cm(-3) provide the first observation of bubble formation below the electron capture threshold. At higher n(e), bullets appear with high shot-to-shot stability together with relativistic electrons that vary widely in spectrum, and help relate bubble formation to fast electron generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA