RESUMO
The clinical performance of the BD Veritor System for Rapid Detection of SARS-CoV-2 nucleocapsid antigen (Veritor), a chromatographic immunoassay used for SARS-CoV-2 point-of-care testing, was evaluated using nasal specimens from individuals with COVID-19 symptoms. Two studies were completed to determine clinical performance. In the first study, nasal specimens and either nasopharyngeal or oropharyngeal specimens from 251 participants with COVID-19 symptoms (≤7 days from symptom onset [DSO], ≥18 years of age) were utilized to compare Veritor with the Lyra SARS-CoV-2 PCR assay (Lyra). In the second study, nasal specimens from 361 participants with COVID-19 symptoms (≤5 DSO, ≥18 years of age) were utilized to compare performance of Veritor to that of the Sofia 2 SARS Antigen FIA test (Sofia 2). The positive, negative, and overall percent agreement (PPA, NPA, and OPA, respectively) were the primary outcomes. In study 1, the PPA for Veritor, compared to Lyra, ranged from 81.8 to 87.5% across the 0 to 1 and 0 to 6 DSO ranges. In study 2, Veritor had PPA, NPA, and OPA values of 97.4, 98.1, and 98.1%, respectively, with Sofia 2. Discordant analysis showed one Lyra positive missed by Veritor and five Lyra positives missed by Sofia 2; one Veritor positive result was negative by Lyra. Veritor met FDA emergency use authorization (EUA) acceptance criteria for SARS-CoV-2 antigen testing for the 0 to 5 and 0 to 6 DSO ranges (PPA values of 83.9% and 82.4%, respectively). Veritor and Sofia 2 showed a high degree of agreement for SARS-CoV-2 detection. The Veritor test allows for more rapid COVID-19 testing utilizing easy-to-collect nasal swabs but demonstrated <100% PPA compared to PCR.
Assuntos
Antígenos Virais/análise , Teste para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/análise , Adulto , Feminino , Humanos , Imunoensaio/métodos , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Orofaringe/virologia , Testes Imediatos , Reação em Cadeia da Polimerase/métodos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e EspecificidadeRESUMO
Mesoporous silica nanoparticle-supported lipid bilayers, or "protocells", exhibit a high loading capacity, enhanced colloidal stability, and peptide-directed, cell-specific uptake, making them especially well-suited for targeted delivery of protein toxins to cancer. Protocells loaded with ricin toxin A-chain (RTA) and targeted to hepatocellular carcinoma cause complete cell death at 30 pM of RTA without affecting the viability of control hepatocytes.
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Bicamadas Lipídicas/química , Nanocápsulas/química , Ricina/administração & dosagem , Ricina/química , Dióxido de Silício/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Teste de Materiais , PorosidadeRESUMO
The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or "protocells") exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides.