Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Vis ; 24(5): 4, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722274

RESUMO

Image differences between the eyes can cause interocular discrepancies in the speed of visual processing. Millisecond-scale differences in visual processing speed can cause dramatic misperceptions of the depth and three-dimensional direction of moving objects. Here, we develop a monocular and binocular continuous target-tracking psychophysics paradigm that can quantify such tiny differences in visual processing speed. Human observers continuously tracked a target undergoing Brownian motion with a range of luminance levels in each eye. Suitable analyses recover the time course of the visuomotor response in each condition, the dependence of visual processing speed on luminance level, and the temporal evolution of processing differences between the eyes. Importantly, using a direct within-observer comparison, we show that continuous target-tracking and traditional forced-choice psychophysical methods provide estimates of interocular delays that agree on average to within a fraction of a millisecond. Thus, visual processing delays are preserved in the movement dynamics of the hand. Finally, we show analytically, and partially confirm experimentally, that differences between the temporal impulse response functions in the two eyes predict how lateral target motion causes misperceptions of motion in depth and associated tracking responses. Because continuous target tracking can accurately recover millisecond-scale differences in visual processing speed and has multiple advantages over traditional psychophysics, it should facilitate the study of temporal processing in the future.


Assuntos
Percepção de Movimento , Psicofísica , Visão Binocular , Humanos , Percepção de Movimento/fisiologia , Psicofísica/métodos , Visão Binocular/fisiologia , Estimulação Luminosa/métodos , Adulto , Percepção de Profundidade/fisiologia , Masculino , Visão Monocular/fisiologia , Feminino , Adulto Jovem , Tempo de Reação/fisiologia
2.
J Vis ; 22(12): 12, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355360

RESUMO

Temporal differences in visual information processing between the eyes can cause dramatic misperceptions of motion and depth. Processing delays between the eyes cause the Pulfrich effect: oscillating targets in the frontal plane are misperceived as moving along near-elliptical motion trajectories in depth (Pulfrich, 1922). Here, we explain a previously reported but poorly understood variant: the anomalous Pulfrich effect. When this variant is perceived, the illusory motion trajectory appears oriented left- or right-side back in depth, rather than aligned with the true direction of motion. Our data indicate that this perceived misalignment is due to interocular differences in neural temporal integration periods, as opposed to interocular differences in delay. For oscillating motion, differences in the duration of temporal integration dampen the effective motion amplitude in one eye relative to the other. In a dynamic analog of the Geometric effect in stereo-surface-orientation perception (Ogle, 1950), the different motion amplitudes cause the perceived misorientation of the motion trajectories. Forced-choice psychophysical experiments, conducted with both different spatial frequencies and different onscreen motion damping in the two eyes show that the perceived misorientation in depth is associated with the eye having greater motion damping. A target-tracking experiment provided more direct evidence that the anomalous Pulfrich effect is caused by interocular differences in temporal integration and delay. These findings highlight the computational hurdles posed to the visual system by temporal differences in sensory processing. Future work will explore how the visual system overcomes these challenges to achieve accurate perception.


Assuntos
Ilusões , Percepção de Movimento , Humanos , Percepção de Profundidade , Percepção Visual , Movimento (Física)
3.
J Vis ; 22(5): 2, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35394508

RESUMO

A goal of visual perception is to provide stable representations of task-relevant scene properties (e.g. object reflectance) despite variation in task-irrelevant scene properties (e.g. illumination and reflectance of other nearby objects). To study such stability in the context of the perceptual representation of lightness, we introduce a threshold-based psychophysical paradigm. We measure how thresholds for discriminating the achromatic reflectance of a target object (task-relevant property) in rendered naturalistic scenes are impacted by variation in the reflectance functions of background objects (task-irrelevant property), using a two-alternative forced-choice paradigm in which the reflectance of the background objects is randomized across the two intervals of each trial. We control the amount of background reflectance variation by manipulating a statistical model of naturally occurring surface reflectances. For low background object reflectance variation, discrimination thresholds were nearly constant, indicating that observers' internal noise determines threshold in this regime. As background object reflectance variation increases, its effects start to dominate performance. A model based on signal detection theory allows us to express the effects of task-irrelevant variation in terms of the equivalent noise, that is relative to the intrinsic precision of the task-relevant perceptual representation. The results indicate that although naturally occurring background object reflectance variation does intrude on the perceptual representation of target object lightness, the effect is modest - within a factor of two of the equivalent noise level set by internal noise.


Assuntos
Sensibilidades de Contraste , Luz , Humanos , Iluminação , Estimulação Luminosa , Percepção Visual
4.
J Vis ; 22(5): 6, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35467704

RESUMO

Binocular stereo cues are important for discriminating 3D surface orientation, especially at near distances. We devised a single-interval task where observers discriminated the slant of a densely textured planar test surface relative to a textured planar surround reference surface. Although surfaces were rendered with correct perspective, the stimuli were designed so that the binocular cues dominated performance. Slant discrimination performance was measured as a function of the reference slant and the level of uncorrelated white noise added to the test-plane images in the left and right eyes. We compared human performance with an approximate ideal observer (planar matching [PM]) and two subideal observers. The PM observer uses the image in one eye and back projection to predict a test image in the other eye for all possible slants, tilts, and distances. The estimated slant, tilt, and distance are determined by the prediction that most closely matches the measured image in the other eye. The first subideal observer (local planar matching [LPM]) applies PM over local neighborhoods and then pools estimates across the test plane. The second suboptimal observer (local frontoparallel matching [LFM]) uses only location disparity. We find that the ideal observer (PM) and the first subideal observer (LPM) outperforms the second subideal observer (LFM), demonstrating the additional benefit of pattern disparities. We also find that all three model observers can account for human performance, if two free parameters are included: a fixed small level of internal estimation noise, and a fixed overall efficiency scalar on slant discriminability.


Assuntos
Sinais (Psicologia) , Percepção de Profundidade , Olho , Humanos
5.
J Neurosci ; 40(4): 864-879, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31772139

RESUMO

A core goal of visual neuroscience is to predict human perceptual performance from natural signals. Performance in any natural task can be limited by at least three sources of uncertainty: stimulus variability, internal noise, and suboptimal computations. Determining the relative importance of these factors has been a focus of interest for decades but requires methods for predicting the fundamental limits imposed by stimulus variability on sensory-perceptual precision. Most successes have been limited to simple stimuli and simple tasks. But perception science ultimately aims to understand how vision works with natural stimuli. Successes in this domain have proven elusive. Here, we develop a model of humans based on an image-computable (images in, estimates out) Bayesian ideal observer. Given biological constraints, the ideal optimally uses the statistics relating local intensity patterns in moving images to speed, specifying the fundamental limits imposed by natural stimuli. Next, we propose a theoretical link between two key decision-theoretic quantities that suggests how to experimentally disentangle the impacts of internal noise and deterministic suboptimal computations. In several interlocking discrimination experiments with three male observers, we confirm this link and determine the quantitative impact of each candidate performance-limiting factor. Human performance is near-exclusively limited by natural stimulus variability and internal noise, and humans use near-optimal computations to estimate speed from naturalistic image movies. The findings indicate that the partition of behavioral variability can be predicted from a principled analysis of natural images and scenes. The approach should be extendable to studies of neural variability with natural signals.SIGNIFICANCE STATEMENT Accurate estimation of speed is critical for determining motion in the environment, but humans cannot perform this task without error. Different objects moving at the same speed cast different images on the eyes. This stimulus variability imposes fundamental external limits on the human ability to estimate speed. Predicting these limits has proven difficult. Here, by analyzing natural signals, we predict the quantitative impact of natural stimulus variability on human performance given biological constraints. With integrated experiments, we compare its impact to well-studied performance-limiting factors internal to the visual system. The results suggest that the deterministic computations humans perform are near optimal, and that behavioral responses to natural stimuli can be studied with the rigor and interpretability defining work with simpler stimuli.


Assuntos
Percepção de Movimento/fisiologia , Detecção de Sinal Psicológico/fisiologia , Humanos , Masculino , Estimulação Luminosa , Psicofísica , Percepção Visual/fisiologia
6.
PLoS Comput Biol ; 16(6): e1007947, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579559

RESUMO

Visual systems estimate the three-dimensional (3D) structure of scenes from information in two-dimensional (2D) retinal images. Visual systems use multiple sources of information to improve the accuracy of these estimates, including statistical knowledge of the probable spatial arrangements of natural scenes. Here, we examine how 3D surface tilts are spatially related in real-world scenes, and show that humans pool information across space when estimating surface tilt in accordance with these spatial relationships. We develop a hierarchical model of surface tilt estimation that is grounded in the statistics of tilt in natural scenes and images. The model computes a global tilt estimate by pooling local tilt estimates within an adaptive spatial neighborhood. The spatial neighborhood in which local estimates are pooled changes according to the value of the local estimate at a target location. The hierarchical model provides more accurate estimates of groundtruth tilt in natural scenes and provides a better account of human performance than the local estimates. Taken together, the results imply that the human visual system pools information about surface tilt across space in accordance with natural scene statistics.


Assuntos
Gestão da Informação , Modelos Teóricos , Interface Usuário-Computador , Humanos
7.
J Vis ; 20(8): 10, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32761107

RESUMO

Binocular fusion relies on matching points in the two eyes that correspond to the same physical feature in the world; however, not all world features are binocularly visible. Near depth edges, some regions of a scene are often visible to only one eye (so-called half occlusions). Accurate detection of these monocularly visible regions is likely to be important for stable visual perception. If monocular regions are not detected as such, the visual system may attempt to binocularly fuse non-corresponding points, which can result in unstable percepts. We investigated the hypothesis that the visual system capitalizes on statistical regularities associated with depth edges in natural scenes to aid binocular fusion and facilitate perceptual stability. By sampling from a large set of stereoscopic natural images with co-registered distance information, we found evidence that monocularly visible regions near depth edges primarily result from background occlusions. Accordingly, monocular regions tended to be more visually similar to the adjacent binocularly visible background region than to the adjacent binocularly visible foreground. Consistent with our hypothesis, perceptual experiments showed that perception tended to be more stable when the image properties of the depth edge were statistically more likely given the probability of occurrence in natural scenes (i.e., when monocular regions were more visually similar to the binocular background). The generality of these results was supported by a parametric study with simulated environments. Exploiting regularities in natural environments may allow the visual system to facilitate fusion and perceptual stability when both binocular and monocular regions are visible.


Assuntos
Percepção de Profundidade/fisiologia , Estatística como Assunto , Visão Binocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Probabilidade , Disparidade Visual/fisiologia , Adulto Jovem
8.
J Vis ; 19(13): 4, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689717

RESUMO

To model the responses of neurons in the early visual system, at least three basic components are required: a receptive field, a normalization term, and a specification of encoding noise. Here, we examine how the receptive field, the normalization factor, and the encoding noise affect the drive to model-neuron responses when stimulated with natural images. We show that when these components are modeled appropriately, the response drives elicited by natural stimuli are Gaussian-distributed and scale invariant, and very nearly maximize the sensitivity (d') for natural-image discrimination. We discuss the statistical models of natural stimuli that can account for these response statistics, and we show how some commonly used modeling practices may distort these results. Finally, we show that normalization can equalize important properties of neural response across different stimulus types. Specifically, narrowband (stimulus- and feature-specific) normalization causes model neurons to yield Gaussian response-drive statistics when stimulated with natural stimuli, 1/f noise stimuli, and white-noise stimuli. The current work makes recommendations for best practices and lays a foundation, grounded in the response statistics to natural stimuli, upon which to build principled models of more complex visual tasks.


Assuntos
Modelos Estatísticos , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Humanos
9.
PLoS Comput Biol ; 13(2): e1005281, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28178266

RESUMO

Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that extract the most useful stimulus features for estimating a user-specified latent variable from those stimuli. Here, we first contribute two technical advances that significantly reduce AMA's compute time: we derive gradients of cost functions for which two popular estimators are appropriate, and we implement a stochastic gradient descent (AMA-SGD) routine for filter learning. Next, we show how the method can be used to simultaneously probe the impact on neural encoding of natural stimulus variability, the prior over the latent variable, noise power, and the choice of cost function. Then, we examine the geometry of AMA's unique combination of properties that distinguish it from better-known statistical methods. Using binocular disparity estimation as a concrete test case, we develop insights that have general implications for understanding neural encoding and decoding in a broad class of fundamental sensory-perceptual tasks connected to the energy model. Specifically, we find that non-orthogonal (partially redundant) filters with scaled additive noise tend to outperform orthogonal filters with constant additive noise; non-orthogonal filters and scaled additive noise can interact to sculpt noise-induced stimulus encoding uncertainty to match task-irrelevant stimulus variability. Thus, we show that some properties of neural response thought to be biophysical nuisances can confer coding advantages to neural systems. Finally, we speculate that, if repurposed for the problem of neural systems identification, AMA may be able to overcome a fundamental limitation of standard subunit model estimation. As natural stimuli become more widely used in the study of psychophysical and neurophysiological performance, we expect that task-specific methods for feature learning like AMA will become increasingly important.


Assuntos
Modelos Neurológicos , Modelos Estatísticos , Psicometria/métodos , Análise e Desempenho de Tarefas , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
10.
J Vis ; 18(6): 4, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029214

RESUMO

Local depth variation is a distinctive property of natural scenes, but its effects on perception have only recently begun to be investigated. Depth variation in natural scenes is due to depth edges between objects and surface nonuniformities within objects. Here, we demonstrate how natural depth variation impacts performance in two fundamental tasks related to stereopsis: half-occlusion detection and disparity detection. We report the results of a computational study that uses a large database of natural stereo-images and coregistered laser-based distance measurements. First, we develop a procedure for precisely sampling stereo-image patches from the stereo-images and then quantify the local depth variation in each patch by its disparity contrast. Next, we show that increased disparity contrast degrades half-occlusion detection and disparity detection performance and changes the size and shape of the spatial integration areas ("receptive fields") that optimize performance. Then, we show that a simple image-computable binocular statistic predicts disparity contrast in natural scenes. Finally, we report the most likely spatial patterns of disparity variation and disparity discontinuities (half-occlusions) in natural scenes. Our findings motivate computational and psychophysical investigations of the mechanisms that underlie stereo processing tasks in local regions of natural scenes.


Assuntos
Percepção de Profundidade/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Percepção Visual/fisiologia , Humanos , Psicofísica
11.
J Vis ; 18(13): 19, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593061

RESUMO

The human visual system supports stable percepts of object color even though the light that reflects from object surfaces varies significantly with the scene illumination. To understand the computations that support stable color perception, we study how estimating a target object's luminous reflectance factor (LRF; a measure of the light reflected from the object under a standard illuminant) depends on variation in key properties of naturalistic scenes. Specifically, we study how variation in target object reflectance, illumination spectra, and the reflectance of background objects in a scene impact estimation of a target object's LRF. To do this, we applied supervised statistical learning methods to the simulated excitations of human cone photoreceptors, obtained from labeled naturalistic images. The naturalistic images were rendered with computer graphics. The illumination spectra of the light sources and the reflectance spectra of the surfaces in the scene were generated using statistical models of natural spectral variation. Optimally decoding target object LRF from the responses of a small learned set of task-specific linear receptive fields that operate on a contrast representation of the cone excitations yields estimates that are within 13% of the correct LRF. Our work provides a framework for evaluating how different sources of scene variability limit performance on luminance constancy.


Assuntos
Percepção de Cores/fisiologia , Luz , Iluminação , Reconhecimento Visual de Modelos/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Feminino , Humanos , Masculino , Modelos Estatísticos , Estimulação Luminosa
12.
J Vis ; 17(12): 16, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29071353

RESUMO

Understanding how nervous systems exploit task-relevant properties of sensory stimuli to perform natural tasks is fundamental to the study of perceptual systems. However, there are few formal methods for determining which stimulus properties are most useful for a given natural task. As a consequence, it is difficult to develop principled models for how to compute task-relevant latent variables from natural signals, and it is difficult to evaluate descriptive models fit to neural response. Accuracy maximization analysis (AMA) is a recently developed Bayesian method for finding the optimal task-specific filters (receptive fields). Here, we introduce AMA-Gauss, a new faster form of AMA that incorporates the assumption that the class-conditional filter responses are Gaussian distributed. Then, we use AMA-Gauss to show that its assumptions are justified for two fundamental visual tasks: retinal speed estimation and binocular disparity estimation. Next, we show that AMA-Gauss has striking formal similarities to popular quadratic models of neural response: the energy model and the generalized quadratic model (GQM). Together, these developments deepen our understanding of why the energy model of neural response have proven useful, improve our ability to evaluate results from subunit model fits to neural data, and should help accelerate psychophysics and neuroscience research with natural stimuli.


Assuntos
Modelos Neurológicos , Percepção Visual/fisiologia , Teorema de Bayes , Humanos , Distribuição Normal , Psicofísica , Retina/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia
13.
J Vis ; 16(13): 2, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27738702

RESUMO

Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then analyzed the relationship between ground-truth tilt and image cue values. Our analysis is free of assumptions about the joint probability distributions and yields the Bayes optimal estimates of tilt, given the cue values. Rich results emerge: (a) typical tilt estimates are only moderately accurate and strongly influenced by the cardinal bias in the prior probability distribution; (b) when cue values are similar, or when slant is greater than 40°, estimates are substantially more accurate; (c) when luminance and texture cues agree, they often veto the disparity cue, and when they disagree, they have little effect; and (d) simplifying assumptions common in the cue combination literature is often justified for estimating tilt in natural scenes. The fact that tilt estimates are typically not very accurate is consistent with subjective impressions from viewing small patches of natural scene. The fact that estimates are substantially more accurate for a subset of image locations is also consistent with subjective impressions and with the hypothesis that perceived surface orientation, at more global scales, is achieved by interpolation or extrapolation from estimates at key locations.


Assuntos
Sinais (Psicologia) , Imageamento Tridimensional , Orientação , Reconhecimento Visual de Modelos/fisiologia , Percepção de Profundidade , Humanos , Fotografação/instrumentação , Probabilidade
14.
J Vis ; 15(5): 16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26067534

RESUMO

The lens system in the human eye is able to best focus light from only one distance at a time.Therefore, many objects in the natural environment are not imaged sharply on the retina. Furthermore, light from objects in the environment is subject to the particular aberrations of the observer's lens system (e.g., astigmatism and chromatic aberration). We refer to blur created by the observer's optics as "natural" or "defocus" blur as opposed to "on-screen" blur created by software on a display screen. Although blur discrimination has been studied extensively, human ability to discriminate defocus blur in images of natural scenes has not been systematically investigated. Here, we measured discrimination of defocus blur for a collection of natural image patches, sampled from well-focused photographs. We constructed a rig capable of presenting stimuli at three physical distances simultaneously. In Experiment 1, subjects viewed monocularly two simultaneously presented natural image patches through a 4-mm artificial pupil at ±1° eccentricity. The task was to identify the sharper patch. Discrimination thresholds varied substantially between stimuli but were correlated between subjects. The lowest thresholds were at or below the lowest thresholds ever reported. In a second experiment, we paralyzed accommodation and retested a subset of conditions from Experiment 1. A third experiment showed that removing contrast as a cue to defocus blur had only a modest effect on thresholds. Finally, we describe a simple masking model and evaluate how well it can explain our experimental results and the results from previous blur discrimination experiments.


Assuntos
Astigmatismo/fisiopatologia , Cristalino/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Retina/fisiologia , Adulto , Feminino , Humanos , Matemática , Psicofísica , Limiar Sensorial/fisiologia
15.
J Vis ; 15(3)2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25795437

RESUMO

We introduce a novel framework for estimating visual sensitivity using a continuous target-tracking task in concert with a dynamic internal model of human visual performance. Observers used a mouse cursor to track the center of a two-dimensional Gaussian luminance blob as it moved in a random walk in a field of dynamic additive Gaussian luminance noise. To estimate visual sensitivity, we fit a Kalman filter model to the human tracking data under the assumption that humans behave as Bayesian ideal observers. Such observers optimally combine prior information with noisy observations to produce an estimate of target position at each time step. We found that estimates of human sensory noise obtained from the Kalman filter fit were highly correlated with traditional psychophysical measures of human sensitivity (R2 > 97%). Because each frame of the tracking task is effectively a "minitrial," this technique reduces the amount of time required to assess sensitivity compared with traditional psychophysics. Furthermore, because the task is fast, easy, and fun, it could be used to assess children, certain clinical patients, and other populations that may get impatient with traditional psychophysics. Importantly, the modeling framework provides estimates of decision variable variance that are directly comparable with those obtained from traditional psychophysics. Further, we show that easily computed summary statistics of the tracking data can also accurately predict relative sensitivity (i.e., traditional sensitivity to within a scale factor).


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Psicofísica , Percepção Visual/fisiologia , Teorema de Bayes , Humanos , Modelos Teóricos , Distribuição Normal
16.
Proc Natl Acad Sci U S A ; 108(40): 16849-54, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21930897

RESUMO

Defocus blur is nearly always present in natural images: Objects at only one distance can be perfectly focused. Images of objects at other distances are blurred by an amount depending on pupil diameter and lens properties. Despite the fact that defocus is of great behavioral, perceptual, and biological importance, it is unknown how biological systems estimate defocus. Given a set of natural scenes and the properties of the vision system, we show from first principles how to optimally estimate defocus at each location in any individual image. We show for the human visual system that high-precision, unbiased estimates are obtainable under natural viewing conditions for patches with detectable contrast. The high quality of the estimates is surprising given the heterogeneity of natural images. Additionally, we quantify the degree to which the sign ambiguity often attributed to defocus is resolved by monochromatic aberrations (other than defocus) and chromatic aberrations; chromatic aberrations fully resolve the sign ambiguity. Finally, we show that simple spatial and spatio-chromatic receptive fields extract the information optimally. The approach can be tailored to any environment-vision system pairing: natural or man-made, animal or machine. Thus, it provides a principled general framework for analyzing the psychophysics and neurophysiology of defocus estimation in species across the animal kingdom and for developing optimal image-based defocus and depth estimation algorithms for computational vision systems.


Assuntos
Percepção de Profundidade/fisiologia , Fixação Ocular/fisiologia , Modelos Biológicos , Visão Ocular/fisiologia , Algoritmos , Teorema de Bayes , Biologia Computacional , Sensibilidades de Contraste/fisiologia , Humanos , Fenômenos Ópticos , Psicofísica , Especificidade da Espécie
17.
J Vis ; 14(2)2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24492596

RESUMO

A great challenge of systems neuroscience is to understand the computations that underlie perceptual constancies, the ability to represent behaviorally relevant stimulus properties as constant even when irrelevant stimulus properties vary. As signals proceed through the visual system, neural states become more selective for properties of the environment, and more invariant to irrelevant features of the retinal images. Here, we describe a method for determining the computations that perform these transformations optimally, and apply it to the specific computational task of estimating a powerful depth cue: binocular disparity. We simultaneously determine the optimal receptive field population for encoding natural stereo images of locally planar surfaces and the optimal nonlinear units for decoding the population responses into estimates of disparity. The optimal processing predicts well-established properties of neurons in cortex. Estimation performance parallels important aspects of human performance. Thus, by analyzing the photoreceptor responses to natural images, we provide a normative account of the neurophysiology and psychophysics of absolute disparity processing. Critically, the optimal processing rules are not arbitrarily chosen to match the properties of neurophysiological processing, nor are they fit to match behavioral performance. Rather, they are dictated by the task-relevant statistical properties of complex natural stimuli. Our approach reveals how selective invariant tuning-especially for properties not trivially available in the retinal images-could be implemented in neural systems to maximize performance in particular tasks.


Assuntos
Sinais (Psicologia) , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Humanos , Neurônios/fisiologia , Estimulação Luminosa , Psicofísica
18.
bioRxiv ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39345647

RESUMO

Vision science and visual neuroscience seek to understand how stimulus and sensor properties limit the precision with which behaviorally-relevant latent variables are encoded and decoded. In the primate visual system, binocular disparity-the canonical cue for stereo-depth perception-is initially encoded by a set of binocular receptive fields with a range of spatial frequency preferences. Here, with a stereo-image database having ground-truth disparity information at each pixel, we examine how response normalization and receptive field properties determine the fidelity with which binocular disparity is encoded in natural scenes. We quantify encoding fidelity by computing the Fisher information carried by the normalized receptive field responses. Several findings emerge from an analysis of the response statistics. First, broadband (or feature-unspecific) normalization yields Laplace-distributed receptive field responses, and narrowband (or feature-specific) normalization yields Gaussian-distributed receptive field responses. Second, the Fisher information in narrowband-normalized responses is larger than in broadband-normalized responses by a scale factor that grows with population size. Third, the most useful spatial frequency decreases with stimulus size and the range of spatial frequencies that is useful for encoding a given disparity decreases with disparity magnitude, consistent with neurophysiological findings. Fourth, the predicted patterns of psychophysical performance, and absolute detection threshold, match human performance with natural and artificial stimuli. The current computational efforts establish a new functional role for response normalization, and bring us closer to understanding the principles that should govern the design of neural systems that support perception in natural scenes.

19.
J Neurophysiol ; 109(12): 3013-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23515794

RESUMO

Signals from the two eyes are first integrated in primary visual cortex (V1). In many mammals, this binocular integration is an important first step in the development of stereopsis, the perception of depth from disparity. Neurons in the binocular zone of mouse V1 receive inputs from both eyes, but it is unclear how that binocular information is integrated and whether this integration has a function similar to that found in other mammals. Using extracellular recordings, we demonstrate that mouse V1 neurons are tuned for binocular disparities, or spatial differences, between the inputs from each eye, thus extracting signals potentially useful for estimating depth. The disparities encoded by mouse V1 are significantly larger than those encoded by cat and primate. Interestingly, these larger disparities correspond to distances that are likely to be ecologically relevant in natural viewing, given the stereo-geometry of the mouse visual system. Across mammalian species, it appears that binocular integration is a common cortical computation used to extract information relevant for estimating depth. As such, it is a prime example of how the integration of multiple sensory signals is used to generate accurate estimates of properties in our environment.


Assuntos
Disparidade Visual , Visão Binocular , Córtex Visual/fisiologia , Potenciais de Ação , Animais , Gatos , Dominância Ocular , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Córtex Visual/citologia
20.
Psychol Rev ; 130(4): 1125-1136, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35549319

RESUMO

Psychology and philosophy have long reflected on the role of perspective in vision. Since the dawn of modern vision science-roughly, since Helmholtz in the late 1800s-scientific explanations in vision have focused on understanding the computations that transform the sensed retinal image into percepts of the three-dimensional environment. The standard view in the science is that distal properties-viewpoint-independent properties of the environment (object shape) and viewpoint-dependent relational properties (3D orientation relative to the viewer)-are perceptually represented and that properties of the proximal stimulus (in vision, the retinal image) are not. This view is woven into the nature of scientific explanation in perceptual psychology, and has guided impressive advances over the past 150 years. A recently published article suggests that in shape perception, the standard view must be revised. It argues, on the basis of new empirical data, that a new entity-perspectival shape-should be introduced into scientific explanations of shape perception. Specifically, the article's centrally advertised claim is that, in addition to distal shape, perspectival shape is perceived. We argue that this claim rests on a series of mistakes. Problems in experimental design entail that the article provides no empirical support for any claims regarding either perspective or the perception of shape. There are further problems in scientific reasoning and conceptual development. Detailing these criticisms and explaining how science treats these issues are meant to clarify method and theory, and to improve exchanges between the science and philosophy of perception. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Moral , Humanos , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA