RESUMO
Background: Mesenchymal stem cells (MSCs) from gestational tissues represent promising strategies for in utero treatment of congenital malformations, but plasticity and required high-risk surgical procedures limit their use. Here we propose natural exosomes (EXOs) isolated from amniotic fluid-MSCs (AF-MSCs), and their mimetic counterparts (MIMs), as valid, stable, and minimally invasive therapeutic alternatives. Methods: MIMs were generated from AF-MSCs by combining sequential filtration steps through filter membranes with different porosity and size exclusion chromatography columns. Physiochemical and molecular characterization was performed to compare them to EXOs released from the same number of cells. The possibility to exploit both formulations as mRNA-therapeutics was explored by evaluating cell uptake (using two different cell types, fibroblasts, and macrophages) and mRNA functionality overtime in an in vitro experimental setting as well as in an ex vivo, whole embryo culture using pregnant C57BL6 dams. Results: Molecular and physiochemical characterization showed no differences between EXOs and MIMs, with MIMs determining a 3-fold greater yield. MIMs delivered a more intense and prolonged expression of mRNA encoding for green fluorescent protein (GFP) in macrophages and fibroblasts. An ex-vivo whole embryo culture demonstrated that MIMs mainly accumulate at the level of the yolk sac, while EXOs reach the embryo. Conclusions: The present data confirms the potential application of EXOs for the prenatal repair of neural tube defects and proposes MIMs as prospective vehicles to prevent congenital malformations caused by in utero exposure to drugs.