Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Clin Sci (Lond) ; 138(10): 599-614, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739452

RESUMO

AIM: Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS: Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS: In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION: In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.


Assuntos
Injúria Renal Aguda , Molécula 1 de Adesão Intercelular , Rim , MicroRNAs , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Rim/patologia , Rim/irrigação sanguínea , Rim/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/metabolismo
3.
Crit Care ; 28(1): 63, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414082

RESUMO

RATIONALE: Acute respiratory distress syndrome (ARDS) is a life-threatening critical care syndrome commonly associated with infections such as COVID-19, influenza, and bacterial pneumonia. Ongoing research aims to improve our understanding of ARDS, including its molecular mechanisms, individualized treatment options, and potential interventions to reduce inflammation and promote lung repair. OBJECTIVE: To map and compare metabolic phenotypes of different infectious causes of ARDS to better understand the metabolic pathways involved in the underlying pathogenesis. METHODS: We analyzed metabolic phenotypes of 3 ARDS cohorts caused by COVID-19, H1N1 influenza, and bacterial pneumonia compared to non-ARDS COVID-19-infected patients and ICU-ventilated controls. Targeted metabolomics was performed on plasma samples from a total of 150 patients using quantitative LC-MS/MS and DI-MS/MS analytical platforms. RESULTS: Distinct metabolic phenotypes were detected between different infectious causes of ARDS. There were metabolomics differences between ARDSs associated with COVID-19 and H1N1, which include metabolic pathways involving taurine and hypotaurine, pyruvate, TCA cycle metabolites, lysine, and glycerophospholipids. ARDSs associated with bacterial pneumonia and COVID-19 differed in the metabolism of D-glutamine and D-glutamate, arginine, proline, histidine, and pyruvate. The metabolic profile of COVID-19 ARDS (C19/A) patients admitted to the ICU differed from COVID-19 pneumonia (C19/P) patients who were not admitted to the ICU in metabolisms of phenylalanine, tryptophan, lysine, and tyrosine. Metabolomics analysis revealed significant differences between C19/A, H1N1/A, and PNA/A vs ICU-ventilated controls, reflecting potentially different disease mechanisms. CONCLUSION: Different metabolic phenotypes characterize ARDS associated with different viral and bacterial infections.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Pneumonia Bacteriana , Síndrome do Desconforto Respiratório , Humanos , COVID-19/complicações , Influenza Humana/complicações , Influenza Humana/terapia , Espectrometria de Massas em Tandem , Cromatografia Líquida , Lisina , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/terapia , Piruvatos
4.
Pacing Clin Electrophysiol ; 47(4): 533-541, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38477034

RESUMO

BACKGROUND: Optimization of atrial-ventricular delay (AVD) during atrial sensing (SAVD) and pacing (PAVD) provides the most effective cardiac resynchronization therapy (CRT). We demonstrate a novel electrocardiographic methodology for quantifying electrical synchrony and optimizing SAVD/PAVD. METHODS: We studied 40 CRT patients with LV activation delay. Atrial-sensed to RV-sensed (As-RVs) and atrial-paced to RV-sensed (Ap-RVs) intervals were measured from intracardiac electrograms (IEGM). LV-only pacing was performed over a range of SAVD/PAVD settings. Electrical dyssynchrony (cardiac resynchronization index; CRI) was measured at each setting using a multilead ECG system placed over the anterior and posterior torso. Biventricular pacing, which included multiple interventricular delays, was also conducted in a subset of 10 patients. RESULTS: When paced LV-only, peak CRI was similar (93 ± 5% vs. 92 ± 5%) during atrial sensing or pacing but optimal PAVD was 61 ± 31 ms greater than optimal SAVD. The difference between As-RVs and Ap-RVs intervals on IEGMs (62 ± 31 ms) was nearly identical. The slope of the correlation line (0.98) and the correlation coefficient r (0.99) comparing the 2 methods of assessing SAVD-PAVD offset were nearly 1 and the y-intercept (0.63 ms) was near 0. During simultaneous biventricular (BiV) pacing at short AVD, SAVD and PAVD programming did not affect CRI, but CRI was significantly (p < .05) lower during atrial sensing at long AVD. CONCLUSIONS: A novel methodology for measuring electrical dyssynchrony was used to determine electrically optimal SAVD/PAVD during LV-only pacing. When BiV pacing, shorter AVDs produce better electrical synchrony.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Humanos , Terapia de Ressincronização Cardíaca/métodos , Resultado do Tratamento , Ventrículos do Coração , Dispositivos de Terapia de Ressincronização Cardíaca , Átrios do Coração , Eletrocardiografia/métodos , Insuficiência Cardíaca/terapia
5.
Prehosp Emerg Care ; 28(3): 531-535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37486096

RESUMO

PURPOSE: Tourniquets are a mainstay of life-saving hemorrhage control. The US military has documented the safety and effectiveness of tourniquet use in combat settings. In civilian settings, events such as the Boston Marathon bombing and mass shootings show that tourniquets are necessary and life-saving entities that must be used correctly and whenever indicated. Much less research has been done on tourniquet use in civilian settings compared to military settings. The purpose of this study is to describe the prehospital use of tourniquets in a regional EMS system served by a single trauma center. METHODS: All documented cases of prehospital tourniquet use from 2015 to 2020 were identified via a search of EMS, emergency department, and inpatient records, and reviewed by the lead investigator. The primary outcomes were duration of tourniquet placement, success of hemorrhage control, and complications; secondary outcomes included time of day (by EMS arrival time), transport interval, extremity involved, who placed/removed the tourniquet, and mechanism of injury. RESULTS: Of 182 patients with 185 tourniquets applied, duration of application was available for 52, with a median (IQR) of 43 (56) minutes. Hemorrhage control was achieved in all but two cases (96%). Three cases (5.8%) required more than one tourniquet. Complications included five cases of temporary paresthesia, one case of ecchymosis, two cases of fasciotomy, and two cases of compression nerve injury. The serious complication rate was 7.7% (4/52). Time of day was daytime (08:01-16:00) = 15 (31.9%), evening (16:01-00:00) = 27 (57.4%), and night (00:01- 08:00) = 5 (10.6%). The median transport interval was 22 (IQR 5] minutes. The limbs most often injured were the left and right upper extremities (15 each). EMS clinicians and police officers were most often the tourniquet placers. Common mechanisms of injury included gunshot wounds, motorcycle accidents, and glass injuries. CONCLUSION: Tourniquets used in the prehospital setting have a high rate of hemorrhage control and a low rate of complications.


Assuntos
Serviços Médicos de Emergência , Ferimentos por Arma de Fogo , Humanos , Torniquetes/efeitos adversos , Estudos Retrospectivos , Hemorragia/etiologia , Hemorragia/terapia
6.
Kidney Int ; 103(3): 461-463, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36822750

RESUMO

Kidney resident macrophages exert pro-inflammatory or reparative effects in experimental acute kidney injury, but their role in sepsis is unclear. In a mouse model of sepsis, Privratsky et al. show that kidney resident F4/80hi macrophages protect against kidney injury by expressing interleukin-1 receptor antagonist, which blocks interleukin-6 production selectively from endothelial cells. Discovery of this novel autocrine loop enhances opportunities for targeted therapies to diminish kidney injury during sepsis.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Camundongos , Células Endoteliais , Macrófagos , Rim
7.
Proc Biol Sci ; 290(1991): 20222084, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36651052

RESUMO

For decades, biogeographers have sought a better understanding of how organisms are distributed among islands. However, the island biogeography of humans remains largely unknown. Here, we investigate how human population size varies among 486 islands at two spatial scales. At a global scale, we tested whether population size increases with island area and declines with island elevation and nearest mainland, as is common in non-human species, or whether humans escape such biogeographic constraints. At a regional scale, we tested whether population sizes vary among islands within archipelagos according to the positioning of different cultural source pools. Results illustrate that on a global scale, human populations increased in size with island area, similar to non-human species, yet they did not decline in size with elevation and distance to nearest mainland. At a regional scale, human population size often varied among islands within archipelagos relative to the location of different cultural source pools. Despite broad-scale similarities in the geographical distribution of human and non-human species among islands, results from this study indicate that the island biogeography of humans may also be influenced by archipelago-specific social, political and historical circumstances.


Assuntos
Biodiversidade , Humanos , Ilhas , Densidade Demográfica
8.
Toxicol Pathol ; 51(4): 160-175, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37632371

RESUMO

Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.


Assuntos
Hipertensão , Patologia Clínica , Humanos , Ratos , Camundongos , Animais , Ratos Endogâmicos SHR , Rim , Modelos Animais de Doenças
9.
J Hered ; 114(6): 625-636, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37455658

RESUMO

Gene flow can affect evolutionary inference when species are undersampled. Here, we evaluate the effects of gene flow and geographic sampling on demographic inference of 2 hummingbirds that hybridize, Allen's hummingbird (Selasphorus sasin) and rufous hummingbird (Selasphorus rufus). Using whole-genome data and extensive geographic sampling, we find widespread connectivity, with introgression far beyond the Allen's × rufous hybrid zone, although the Z chromosome resists introgression beyond the hybrid zone. We test alternative hypotheses of speciation history of Allen's, rufous, and Calliope (S. calliope) hummingbird and find that rufous hummingbird is the sister taxon to Allen's hummingbird, and Calliope hummingbird is the outgroup. A model treating the 2 subspecies of Allen's hummingbird as a single panmictic population fit observed genetic data better than models treating the subspecies as distinct populations, in contrast to morphological and behavioral differences and analyses of spatial population structure. With additional sampling, our study builds upon recent studies that came to conflicting conclusions regarding the evolutionary histories of these 2 species. Our results stress the importance of thorough geographic sampling when assessing demographic history in the presence of gene flow.


Assuntos
Evolução Biológica , Aves , Animais , Aves/genética
10.
Cell Mol Life Sci ; 79(7): 376, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731367

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs, highly conserved between species, that are powerful regulators of gene expression. Aberrant expression of miRNAs alters biological processes and pathways linked to human disease. miR-486-5p is a muscle-enriched miRNA localized to the cytoplasm and nucleus, and is highly abundant in human plasma and enriched in small extracellular vesicles. Studies of malignant and non-malignant diseases, including kidney diseases, have found correlations with circulating miR-486-5p levels, supporting its role as a potential biomarker. Pre-clinical studies of non-malignant diseases have identified miR-486-5p targets that regulate major signaling pathways involved in cellular proliferation, migration, angiogenesis, and apoptosis. Validated miR-486-5p targets include phosphatase and tensin homolog (PTEN) and FoXO1, whose suppression activates phosphatidyl inositol-3-kinase (PI3K)/Akt signaling. Targeting of Smad1/2/4 and IGF-1 by miR-486-5p inhibits transforming growth factor (TGF)-ß and insulin-like growth factor-1 (IGF-1) signaling, respectively. Other miR-486-5p targets include matrix metalloproteinase-19 (MMP-19), Sp5, histone acetyltransferase 1 (HAT1), and nuclear factor of activated T cells-5 (NFAT5). In this review, we examine the biogenesis, regulation, validated gene targets and biological effects of miR-486-5p in non-malignant diseases.


Assuntos
Fenômenos Biológicos , MicroRNAs , Proliferação de Células/genética , Humanos , Fator de Crescimento Insulin-Like I , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA