Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Comput Chem ; 45(14): 1143-1151, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38284556

RESUMO

Molecular simulations have become a key tool in molecular and materials design. Machine learning (ML)-based potential energy functions offer the prospect of simulating complex molecular systems efficiently at quantum chemical accuracy. In previous work, we have introduced the ML-based PairF-Net approach to neural network potentials, that adopts a pairwise interatomic scheme to predicting forces within a molecular system. Here, we further develop the PairF-Net model to intrinsically incorporate energy conservation and couple the model to a molecular mechanical (MM) environment within the OpenMM package. The updated PairF-Net model yields energy and force predictions and dynamical distributions in good agreement with the rMD17 dataset of ten small organic molecules in the gas-phase. We further show that these in vacuo ML models of small molecules can be applied to force predictions in aqueous solution via hybrid ML/MM simulations. We present a new benchmark dataset for these ten molecules in solution, obtained from QM/MM simulations, which we denote as rMD17-aq (https://zenodo.org/records/10048644); and assess the ability of PairF-Net to reproduce the molecular energy, atomic forces and dynamical distributions of these solution conformations via ML/MM simulations.

2.
Inorg Chem ; 62(6): 2672-2679, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716284

RESUMO

Following electrospray ionization, it is common for analytes to enter the gas phase accompanied by a charge-carrying ion, and in most cases, this addition is required to enable detection in the mass spectrometer. These small charge carriers may not be influential in solution but can markedly tune the analyte properties in the gas phase. Therefore, measuring their relative influence on the target molecule can assist our understanding of the structure and stability of the analyte. As the formed adducts are usually distinguishable by their mass, differences in the behavior of the analyte resulting from these added species (e.g., structure, stability, and conformational dynamics) can be easily extracted. Here, we use ion mobility mass spectrometry, supported by density functional theory, to investigate how charge carriers (H+, Na+, K+, and Cs+) as well as water influence the disassembly, stability, and conformational landscape of the homometallic ring [Cr8F8(O2CtBu)16] and the heterometallic rotaxanes [NH2RR'][Cr7MF8(O2CtBu)16], where M = MnII, FeII, CoII, NiII, CuII, ZnII, and CdII. The results yield new insights on their disassembly mechanisms and support previously reported trends in cavity size and transition metal properties, demonstrating the potential of adduct ion studies for characterizing metallosupramolecular complexes in general.

3.
J Am Chem Soc ; 144(49): 22528-22539, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36459680

RESUMO

Understanding the fundamental reactivity of polymetallic complexes is challenging due to the complexity of their structures with many possible bond breaking and forming processes. Here, we apply ion mobility mass spectrometry coupled with density functional theory to investigate the disassembly mechanisms and energetics of a family of heterometallic rings and rotaxanes with the general formula [NH2RR'][Cr7MF8(O2CtBu)16] with M = MnII, FeII, CoII, NiII, CuII, ZnII, CdII. Our results show that their stability can be tuned both by altering the d-metal composition in the macrocycle and by the end groups of the secondary ammonium cation [NH2RR']+. Ion mobility probes the conformational landscape of the disassembly process from intact complex to structurally distinct isobaric fragments, providing unique insights to how a given divalent metal tunes the structural dynamics.


Assuntos
Rotaxanos , Metais/química , Conformação Molecular , Cátions Bivalentes
4.
Inorg Chem ; 60(24): 18832-18842, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34847326

RESUMO

Among the linear actinyl(VI/V) cations, the uranyl(V) species are particularly intriguing because they are unstable and exhibit a unique behavior to undergo H+ promoted disproportionation in aqueous solution and form stable uranyl(VI) and U(IV) complexes. This study uses density functional theory (DFT) combined with the conductor-like polarizable continuum model approach to investigate [UO2]2+/+ to [UIVO2] reduction free energies (RFEs) and explores the stability of uranyl(V) complexes in aqueous solution through computing disproportionation free energies (DFEs) for an outer-sphere electron transfer process. In addition to the aqua complex (U1), another three commonly encountered ligands such as chloride (U2), acetate (U3), and carbonate (U4) in aqueous environmental conditions are taken into account. For the U1 complex, the computed 1e- (V/IV) and 2e- (VI/IV) RFEs are in good agreement with experiments. The computed DFEs reveal that the presence of H+ is imperative for the disproportionation to take place. Although the presence of the alkali cations favors the disproportionation to some extent, they cannot fully make the reaction thermodynamically feasible. For the anionic complexes, the high negative charge does not allow for the formation of a cation-cation encounter complex due to Coulombic repulsion. Furthermore, an additional factor is the ligand exchange reaction which is also an energy-demanding step. Therefore, the current study examined the Kern-Orlemann mechanism and our results validate the mechanism based on DFT computed DFEs and propose that for the anionic complexes, an outer-sphere electron transfer is highly probable and our computed protonation free energies further support this claim.

5.
J Am Chem Soc ; 142(37): 15941-15949, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32820906

RESUMO

The synthesis, structures, and properties of [4]- and [3]-rotaxane complexes are reported where [2]-rotaxanes, formed from heterometallic {Cr7Ni} rings, are bound to a fluoride-centered {CrNi2} triangle. The compounds have been characterized by single-crystal X-ray diffraction and have the formulas [CrNi2(F)(O2CtBu)6]{(BH)[Cr7NiF8(O2CtBu)16]}3 (3) and [CrNi2(F)(O2CtBu)6(THF)]{(BH)[Cr7NiF8(O2CtBu)16]}2 (4), where B = py-CH2CH2NHCH2C6H4SCH3. The [4]-rotaxane 3 is an isosceles triangle of three [2]-rotaxanes bound to the central triangle while the [3]-rotaxane 4 contains only two [2]-rotaxanes bound to the central triangle. Studies of the behavior of 3 and 4 in solution by small-angle X-ray scattering and atomistic molecular dynamic simulations show that the structure of 3 is similar to that found in the crystal but that 4 has a different conformation to the crystal. Continuous wave and pulsed electron paramagnetic resonance spectroscopy was used to study the structures present and demonstrate that in frozen solutions (at 5 K) 4 forms more extended molecules than 3 and with a wider range of conformations.

6.
Chemphyschem ; 20(14): 1869-1878, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31063234

RESUMO

Computational methods have been applied to understand the reduction potentials of [UO2 -salmnt-L] complexes (L=pyridine, DMSO, DMF and TPPO), and their redox behavior is compared with previous experiments in dichloromethane solution. Since the experimental results were inconclusive regarding the influence of the uranyl-bound tetra-dentate 'salmnt' ligand, here we will show that salmnt acts as a redox-active ligand and exhibits non-innocent behavior to interfere with the otherwise expected one-electron metal (U) reduction. We have employed two approaches to determine the uranyl (VI/V) reduction potentials, using a direct study of one-electron reduction processes and an estimation of the overall reduction using isodesmic reactions. Hybrid density functional theory (DFT) methods were combined with the Conductor-like Polarizable Continuum Model (CPCM) to account for solvation effects. The computationally predicted one-electron reduction potentials for the range of [UO2 -salmnt-L] complexes are in excellent agreement with shoulder peaks (∼1.4 eV) observed in the cyclic voltammetry experiments and clearly correlate with ligand reduction. Highly conjugated pi-bonds stabilize the ligand based delocalized orbital relative to the localized U f-orbitals, and as a consequence, the ligand traps the incoming electron. A second reduction step results in metal U(VI) to U(V) reduction, in good agreement with the experimentally assigned uranyl (VI/V) reduction potentials.

7.
Phys Chem Chem Phys ; 21(6): 3227-3241, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30681090

RESUMO

Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. In this study, to determine the reduction potentials of uranyl complexes in non-aqueous solutions, a hybrid density functional theory (DFT) approach was used in which two different DFT functionals, B3LYP and M06, were applied. Bulk solvent effects were invoked through the conductor-like polarizable continuum model. The solute cavities were described with the united-atom Kohn-Sham (UAKS) cavity definition. Inside the cavity the dielectric constant matches the value of a vacuum and outside the cavity the dielectric constant value is the same as that of the solvent of interest, for example, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dichloromethane (DCM), acetonitrile and pyridine. With the help of the Nernst equation the calculated reduction potentials with respect to the ferrocene (Fc) reference electrode are converted into reduction free energies (RFEs). Uranyl complexes of organic ligands which range from mono- to hexa-dentate coordination modes were investigated in non-aqueous solutions of DMSO, DMF, DCM, acetonitrile and pyridine solutions. The effect of the spin-orbit correction and the reference electrode correction on the RFEs and various methods such as the direct method and the isodesmic reaction model were explored. Overall, our computational determination of RFEs of uranyl complexes in various non-aqueous solutions demonstrates that the RFEs can be obtained within ∼0.2 eV of experimental values.

8.
PLoS Pathog ; 9(4): e1003301, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23633950

RESUMO

Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.


Assuntos
Salmonella enterica/patogenicidade , Febre Tifoide/microbiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Proteômica , Salmonella enterica/genética , Salmonella enterica/metabolismo , Febre Tifoide/metabolismo
9.
Inorg Chem Front ; 10(23): 6945-6952, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38021441

RESUMO

Here we report the synthesis and structural characterization of four [7]rotaxanes formed by coordinating hybrid inorganic-organic [2]rotaxanes to a central {Ni12} core. X-ray single crystal diffraction demonstrate that [7]rotaxanes are formed, with a range of conformations in the crystal. Small angle X-ray scattering supported by molecular dynamic simulations demonstrates that the large molecules are stable in solution and also show that the conformers present in solution are not those found in the crystal. Pulsed EPR spectroscopy show that phase memory times for the {Cr7Ni} rings, which have been proposed as qubits, are reduced but not dramatically by the presence of the {Ni12} cage.

10.
Environ Sci Technol ; 46(14): 7587-94, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22642750

RESUMO

Adsorption of actinyl ions onto mineral surfaces is one of the main mechanisms that control the migration of these ions in environmental systems. Here, we present computational classical molecular dynamics (MD) simulations to investigate the behavior of U(VI) in contact with different calcite surfaces. The calcium-uranyl-carbonate [Ca(2)UO(2)(CO(3))(3)] species is shown to display both inner- and outer-sphere adsorption to the flat {101̅4} and the stepped {314̅8} and {31̅2̅16} planes of calcite. Free energy calculations, using the umbrella sampling method, are employed to simulate adsorption paths of the same uranyl species on the different calcite surfaces under aqueous condition. Outer-sphere adsorption is found to dominate over inner-sphere adsorption because of the high free energy barrier of removing a uranyl-carbonate interaction and replacing it with a new uranyl-surface interaction. An important binding mode is proposed involving a single vicinal water monolayer between the surface and the sorbed complex. From the free energy profiles of the different calcite surfaces, the uranyl complex was also found to adsorb preferentially on the acute-stepped {314̅8} face of calcite, in agreement with experiment.


Assuntos
Carbonato de Cálcio/química , Carbonatos/química , Simulação de Dinâmica Molecular , Compostos de Urânio/química , Adsorção , Cátions , Propriedades de Superfície , Termodinâmica , Água/química
12.
Phys Chem Chem Phys ; 13(23): 11402-11, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21566831

RESUMO

Carbonate anion exchange reactions with water in the uranyl-carbonate and calcium-uranyl-carbonate aqueous systems have been investigated using computational methods. Classical molecular dynamics (MD) simulations with the umbrella sampling technique were employed to determine potentials of mean force for the exchange reactions of water and carbonate. The presence of calcium counter-ions is predicted to increase the stability of the uranyl-carbonate species in accordance with previous experimental observations. However, the free energy barrier to carbonate exchange with water is found to be comparable both in the presence and absence of calcium cations. Possible implications of these results for uranyl adsorption on mineral surfaces are discussed. Density functional theory (DFT) calculations were also used to confirm the trends observed in classical molecular dynamics simulations and to corroborate the validity of the potential parameters employed in the MD scheme.

13.
Dalton Trans ; 50(12): 4390-4395, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33704335

RESUMO

Gold(i) bridged dimeric and trimeric structures of a ground state spin S = 1/2 heterometallic {Cr7Ni} wheel have been prepared and studied by continuous wave (CW) and pulsed wave EPR spectrometry. The {Cr7Ni} relaxation time constants (T1 and Tm) show rates matching well with previous observations. Four pulse Double Electron Resonance (DEER) studies suggest presence of more than one conformations. Small Angle X-ray Scattering (SAXS) in conjunction with Molecular Dynamic (MD) Simulations were performed to look at the possible conformations in solution. In line with DEER results, simulation data further indicated more flexible molecular geometry in solution than the one in solid state.

14.
J Chem Inf Model ; 50(3): 368-79, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20175582

RESUMO

The binding of a selection of competitive imidazo [1,2-b] pyridazine inhibitors of PIM-1 kinase with nanomolar activity has been analyzed using computational methods. Molecular dynamics simulations using umbrella sampling to determine a potential of mean force have been used to accurately predict the relative free energies of binding of these inhibitors, from -4.3 to -9.5 kcal mol(-1), in excellent agreement with the trends observed in previous experimental assays. The relative activity of the inhibitors could not be accounted for by any single effect or interaction within the active site and could only be fully reproduced when the overall free energies were considered, including important contributions from interactions outside the hinge region and using explicit solvent in the active site. The potential of mean force for the displacement of the glycine-rich phosphate binding loop (P-loop) has also been estimated and shown to be an important feature in the binding of these ligands.


Assuntos
Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Piridazinas/química , Piridazinas/farmacologia , Sítios de Ligação , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-pim-1/química , Termodinâmica
15.
Phys Chem Chem Phys ; 12(26): 7117-25, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20480085

RESUMO

The importance of the intermolecular interactions which contribute to the binding of HIV-1 RT with the NNRTI inhibitor, nevirapine (NVP), has been studied using quantum mechanical and molecular simulation methods. A range of computational methods, including density functional theory with empirical dispersion corrections, have been employed and show that although pi-pi stacking interactions are important, the combined effect of a number of C-H/pi interactions provides a significant contribution to the binding. The AMBER empirical force-field has been shown to be particularly effective to describe the interactions in this case; MM-GBSA free-energy methods were subsequently used to explore the effects on binding with several known mutations of HIV-1 RT. The relative affinities from the mutation simulations are shown to be in good agreement with experimental data allowing the causes of the binding changes to be discussed.


Assuntos
Fármacos Anti-HIV/química , Transcriptase Reversa do HIV/química , Nevirapina/química , Inibidores da Transcriptase Reversa/química , Substituição de Aminoácidos , Sítios de Ligação , Transcriptase Reversa do HIV/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Teoria Quântica , Termodinâmica
16.
Phys Chem Chem Phys ; 12(28): 7959-67, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20517573

RESUMO

The effect of benzene fluorination on C-H...pi interactions is studied using a number of computational methods applied to a range of intermolecular complexes. High level wavefunction methods (CCSD(T)) predict a slightly greater interaction energy for complexes of benzene with methane or fucose, compared to corresponding complexes involving hexafluorobenzene. A number of more approximate treatments, DFT with the M06-2X functional, PM3-D* and MM methods, give interaction energies within 1 kcal mol(-1) of the high level values, and also correctly predict that the interaction energy is slightly greater for benzene compared to hexafluorobenzene. However, the DFT-D model used here predicts that the interaction energy is slightly greater for hexafluorobenzene. Molecular dynamics simulations, employing the GLYCAM-06 force field, validated here, are used to model the complexes of benzene and hexafluorobenzene with beta-cyclodextrin in aqueous solution. We predict the binding free energies of the complexes to be within 0.5 kcal mol(-1), and suggest that the different chemical shifts of the H5 protons observed in the two complexes arise from their slightly different structures, rather than from different binding energies.


Assuntos
Benzeno/química , Fluorocarbonos/química , Fucose/química , beta-Ciclodextrinas/química , Simulação de Dinâmica Molecular , Teoria Quântica , Termodinâmica
17.
J Phys Chem A ; 112(26): 5960-72, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18543880

RESUMO

Many metallabenzene complexes appear to exhibit an enhanced thermodynamic stability which has been attributed to the concept of aromaticity. Analysis of the ring currents induced by a magnetic field, either by direct visualization or by considering nuclear or nucleus-independent chemical shielding values (NMR or NICS), have become useful theoretical tools to characterize the aromaticity of many molecules involving the main group elements. We have analyzed 21 metallabenzenes using variations of these techniques, which take account of the large core and metal orbital contributions which often lead to transition-metal-containing systems exhibiting anomalous shielding values. Analysis of individual orbital contributions to both the ring currents and chemical shielding values based upon the ipsocentric and CSGT (continuous set of gauge transformations) methods has shown that complexes such as the 18 electron Ir or Rh(C 5H 5)(PH 3) 2Cl 2 molecules should be classed as aromatic, whereas the 16 electron complexes such as Os or Ru(C 5H 5)(PH 3) 2Cl 2 should not, despite having the same occupancy of pi-MOs. The differences can be directly attributed to the HOMO/LUMO b 2 in-plane (d xy ) molecular orbital, which, when unoccupied, is available to disrupt the delocalized currents typical of aromatic systems. A range of Pd and Pt metallabenzenes with cyclopentadienyl and phosphine ligands is also discussed as having aromatic and nonaromatic character, respectively.

18.
J Phys Chem B ; 111(19): 5511-7, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17455972

RESUMO

The mechanism of nitrite reduction at the Cu(II) center of both copper nitrite reductase and a number of corresponding synthetic models has been investigated by using both QM/MM and cluster calculations employing density functional theory methods. The mechanism in both cases is found to be very similar. Initially nitrite is bound in a bidentate fashion to the Cu(II) center via the two oxygen atoms. Upon reduction of the copper center, the two possible coordination modes of the protonated nitrite, by either nitrogen or a single oxygen atom, are close in energy, with nitrogen coordination probably preferred. Further protonation of this species leads to N-O bond cleavage, and an electron transfer from the Cu(I) center to the N-O+ ligand, resulting in loss of NO and regeneration of the resting state of the enzyme having a bound water molecule.


Assuntos
Cobre/química , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Sítios de Ligação , Cobre/metabolismo , Oxirredução , Conformação Proteica
19.
Chem Commun (Camb) ; 53(36): 5001-5004, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28426063

RESUMO

The first hydrophilic, 1,10-phenanthroline derived ligands consisting of only C, H, O and N atoms for the selective extraction of Am(iii) from spent nuclear fuel are reported herein. One of these 2,9-bis-triazolyl-1,10-phenanthroline (BTrzPhen) ligands combined with a non-selective extracting agent, was found to exhibit process-suitable selectivity for Am(iii) over Eu(iii) and Cm(iii), providing a clear step forward.

20.
Dalton Trans ; 45(45): 18102-18112, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27488559

RESUMO

The first examples of 4,7-disubstituted 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzo-triazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) ligands are reported herein. Evaluating the kinetics, selectivity and stoichiometry of actinide(iii) and lanthanide(iii) radiotracer extractions has provided a mechanistic insight into the extraction process. For the first time, it has been demonstrated that metal ion extraction kinetics can be modulated by backbone functionalisation and a promising new CHON compliant candidate ligand with enhanced metal ion extraction kinetics has been identified. The effects of 4,7-functionalisation on the equilibrium metal ion distribution ratios are far more pronounced than those of 5,6-functionalisation. The complexation of Cm(iii) with two of the functionalised ligands was investigated by TRLFS and, at equilibrium, species of 1 : 2 [M : L] stoichiometry were observed exclusively. A direct correlation between the ELUMO-EHOMO energy gap and metal ion extraction potential is reported, with DFT studies reaffirming experimental findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA