Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Physiol Pharmacol ; 73(5)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36942805

RESUMO

The baroreflex (BR) is an important physiological regulatory mechanism which reacts to blood pressure perturbations with reflex changes of target variables such as the heart period (electrocardiogram derived RR interval) or the peripheral vascular resistance (PVR). Evaluation of cardiac chronotropic (RR as a target variable) and vascular resistance (target PVR) BR arms was in previous studies mainly based on the use of the spontaneous variability of the systolic or diastolic blood pressure (SBP, DBP), respectively, as the input signals. The use of other blood pressure measures such as the mean blood pressure (MBP) as an input signal for BR analysis is still under investigation. Making the assumption that the strength of coupling along the BR indicates the more appropriate input signal for baroreflex analysis, we employ partial spectral decomposition to assess in the frequency domain the causal coupling from SBP, MBP or DBP to RR or PVR. Noninvasive beat-to-beat recording of RR, SBP, MBP and DBP and PVR was performed in 39 and 36 volunteers in whom orthostatic and cognitive loads were evoked respectively through head-up tilt and mental arithmetic task. At rest, the MBP was most tightly coupled with RR, in contrast to the analysis of the vascular resistance BR arm where the results showed similar importance of all blood pressure input signals. During orthostasis, the increased importance of SBP as the input signal for BR analysis along the cardiac chronotropic arm was demonstrated. In addition, the gain from MBP to RR was more sensitive to physiological state changes compared to gains with SBP or DBP signal as inputs. We conclude that the coupling strength depends not only on the analysed baroreflex arm but also on the selection of the input blood pressure signal and the physiological state. The MBP signal should be more frequently used for the cardiac baroreflex analysis.


Assuntos
Barorreflexo , Eletrocardiografia , Humanos , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Hemodinâmica , Coração , Frequência Cardíaca
2.
Opt Lett ; 35(3): 363-5, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20125722

RESUMO

We observe second harmonic generation via random quasi-phase-matching in a 2.0 mum periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component.

3.
J Appl Physiol (1985) ; 128(5): 1310-1320, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32213110

RESUMO

Baroreflex response consists of cardiac chronotropic (effect on heart rate), cardiac inotropic (on contractility), venous (on venous return) and vascular (on vascular resistance) arms. Because of the simplicity of its measurement, the cardiac chronotropic arm is most often analyzed. The aim was to introduce a method to assess the vascular baroreflex arm and to characterize its changes during stress. We evaluated the effect of orthostasis and mental arithmetics (MA) in 39 (22 women, 17 men; median age: 18.7 yr) and 36 (21 women, 15 men; 19.2 yr) healthy volunteers, respectively. We recorded systolic (SBP) and mean (MBP) blood pressure by volume-clamp method and R-R interval (RR) by ECG. Cardiac output (CO) was recorded by impedance cardiography. From MBP and CO, peripheral vascular resistance (PVR) was calculated. The directional spectral coupling and gain of cardiac chronotropic (SBP to RR) and vascular (SBP to PVR) arms were quantified. The strength of the causal coupling from SBP to PVR was significantly higher than that of SBP to RR coupling over the whole protocol (P < 0.001). Along both arms, the coupling was higher during orthostasis compared with the supine position (P < 0.001 and P = 0.006); no MA effect was observed. No significant changes in the spectral gain (ratio of RR or PVR change to a unit SBP change) across all phases were found (0.111 ≤ P ≤ 0.907). We conclude that changes in PVR are tightly coupled with SBP oscillations via the baroreflex, providing an approach for baroreflex vascular arm analysis with the potential to reveal new aspects of blood pressure dysregulation.NEW & NOTEWORTHY Baroreflex response consists of several arms, but the cardiac chronotropic arm (blood pressure changes evoking heart rate response) is usually analyzed. This study introduces a method to assess the vascular baroreflex arm with the continuous noninvasive measurement of peripheral vascular resistance as an output considering causality in the interaction between oscillations and slower dynamics of vascular tone changes. We conclude that although vascular baroreflex arm involvement becomes dominant during orthostasis, gain of this interaction is relatively stable.


Assuntos
Barorreflexo , Adolescente , Pressão Sanguínea , Débito Cardíaco , Feminino , Frequência Cardíaca , Humanos , Masculino , Resistência Vascular
4.
Opt Express ; 15(14): 8805-11, 2007 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19547216

RESUMO

In this work we report on the time and spatial resolved fluorescence of Neodymium ions in LiNbO(3) channel waveguides fabricated by Reverse Proton Exchange. The analysis of the fluorescence decay curves obtained with a sub-micrometric resolution has evidenced the presence of a relevant fluorescence quenching inside the channel waveguide. From the comparison between diffusion simulations and the spatial dependence of the (4)F(3/2) fluorescence decay rate we have concluded that the observed fluorescence quenching can be unequivocally related to the presence of H+ ions in the LiNbO(3) lattice. Nevertheless, it turns out that Reverse Proton Exchange guarantees a fluorescence quenching level significantly lower than in similar configurations based on Proton Exchange waveguides. This fluorescence quenching has been found to be accompanied by a relevant red-shift of the (4)F(3/2)?(4)I(9/2) fluorescence band.

5.
Sci Rep ; 3: 3116, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24173583

RESUMO

We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement.

8.
Bibl Ophthalmol ; 74: 94-105, 1968.
Artigo em Inglês | MEDLINE | ID: mdl-5638256
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA