Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 579(7798): 279-283, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132708

RESUMO

Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes1-3, the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation-all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment-reversing hepatic steatosis and glucose intolerance-were abrogated in Insp3r1 (also known as Itpr1)-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes.


Assuntos
Glucagon/farmacologia , Gluconeogênese/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fígado/efeitos dos fármacos , Acetilcoenzima A/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Glucagon/sangue , Receptores de Inositol 1,4,5-Trifosfato/genética , Lipase/metabolismo , Lipólise/efeitos dos fármacos , Lipólise/genética , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Oxirredução/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 119(10): e2122287119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238637

RESUMO

SignificanceMetformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin's glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Gluconeogênese , Guanidinas/farmacologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Fenformin/farmacologia , Animais , Glucose/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fígado/metabolismo , Oxirredução , Piridinas/farmacologia
3.
Proc Natl Acad Sci U S A ; 117(14): 8166-8176, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32188779

RESUMO

Multiple insulin-regulated enzymes participate in hepatic glycogen synthesis, and the rate-controlling step responsible for insulin stimulation of glycogen synthesis is unknown. We demonstrate that glucokinase (GCK)-mediated glucose phosphorylation is the rate-controlling step in insulin-stimulated hepatic glycogen synthesis in vivo, by use of the somatostatin pancreatic clamp technique using [13C6]glucose with metabolic control analysis (MCA) in three rat models: 1) regular chow (RC)-fed male rats (control), 2) high fat diet (HFD)-fed rats, and 3) RC-fed rats with portal vein glucose delivery at a glucose infusion rate matched to the control. During hyperinsulinemia, hyperglycemia dose-dependently increased hepatic glycogen synthesis. At similar levels of hyperinsulinemia and hyperglycemia, HFD-fed rats exhibited a decrease and portal delivery rats exhibited an increase in hepatic glycogen synthesis via the direct pathway compared with controls. However, the strong correlation between liver glucose-6-phosphate concentration and net hepatic glycogen synthetic rate was nearly identical in these three groups, suggesting that the main difference between models is the activation of GCK. MCA yielded a high control coefficient for GCK in all three groups. We confirmed these findings in studies of hepatic GCK knockdown using an antisense oligonucleotide. Reduced liver glycogen synthesis in lipid-induced hepatic insulin resistance and increased glycogen synthesis during portal glucose infusion were explained by concordant changes in translocation of GCK. Taken together, these data indicate that the rate of insulin-stimulated hepatic glycogen synthesis is controlled chiefly through GCK translocation.


Assuntos
Fígado Gorduroso/patologia , Glucoquinase/metabolismo , Glucose/metabolismo , Glicogênio Hepático/biossíntese , Fígado/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Técnicas de Silenciamento de Genes , Glucoquinase/genética , Glucose/administração & dosagem , Glucose-6-Fosfato/análise , Glucose-6-Fosfato/metabolismo , Humanos , Hiperglicemia/etiologia , Hiperglicemia/patologia , Hiperinsulinismo/etiologia , Hiperinsulinismo/patologia , Insulina/metabolismo , Resistência à Insulina , Fígado/patologia , Masculino , Metabolômica , Fosforilação , Ratos
4.
Am J Physiol Endocrinol Metab ; 311(1): E105-16, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27166280

RESUMO

Mitochondrial dysfunction is associated with many human diseases and results from mismatch of damage and repair over the life of the organelle. PARK2 is a ubiquitin E3 ligase that regulates mitophagy, a repair mechanism that selectively degrades damaged mitochondria. Deletion of PARK2 in multiple in vivo models results in susceptibility to stress-induced mitochondrial and cellular dysfunction. Surprisingly, Park2 knockout (KO) mice are protected from nutritional stress and do not develop obesity, hepatic steatosis or insulin resistance when fed a high-fat diet (HFD). However, these phenomena are casually related and the physiological basis for this phenotype is unknown. We therefore undertook a series of acute HFD studies to more completely understand the physiology of Park2 KO during nutritional stress. We find that intestinal lipid absorption is impaired in Park2 KO mice as evidenced by increased fecal lipids and reduced plasma triglycerides after intragastric fat challenge. Park2 KO mice developed hepatic steatosis in response to intravenous lipid infusion as well as during incubation of primary hepatocytes with fatty acids, suggesting that hepatic protection from nutritional stress was secondary to changes in energy balance due to altered intestinal triglyceride absorption. Park2 KO mice showed reduced adiposity after 1-wk HFD, as well as improved hepatic and peripheral insulin sensitivity. These studies suggest that changes in intestinal lipid absorption may play a primary role in protection from nutritional stress in Park2 KO mice by preventing HFD-induced weight gain and highlight the need for tissue-specific models to address the role of PARK2 during metabolic stress.


Assuntos
Peso Corporal/genética , Dieta Hiperlipídica , Resistência à Insulina/genética , Absorção Intestinal/genética , Metabolismo dos Lipídeos/genética , Ubiquitina-Proteína Ligases/genética , Animais , Metabolismo Energético , Ácidos Graxos/farmacologia , Fígado Gorduroso/genética , Fezes/química , Infusões Intravenosas , Mucosa Intestinal/metabolismo , Lipídeos/análise , Lipídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitofagia/genética , Triglicerídeos/sangue , Aumento de Peso/genética
5.
Sci Transl Med ; 11(512)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578240

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is estimated to affect up to one-third of the general population, and new therapies are urgently required. Our laboratory previously developed a controlled-release mitochondrial protonophore (CRMP) that is functionally liver-targeted and promotes oxidation of hepatic triglycerides. Although we previously demonstrated that CRMP safely reverses hypertriglyceridemia, fatty liver, hepatic inflammation, and fibrosis in diet-induced rodent models of obesity, there remains a critical need to assess its safety and efficacy in a model highly relevant to humans. Here, we evaluated the impact of longer-term CRMP treatment on hepatic mitochondrial oxidation and on the reversal of hypertriglyceridemia, NAFLD, and insulin resistance in high-fat, fructose-fed cynomolgus macaques (n = 6) and spontaneously obese dysmetabolic rhesus macaques (n = 12). Using positional isotopomer nuclear magnetic resonance tracer analysis (PINTA), we demonstrated that acute CRMP treatment (single dose, 5 mg/kg) increased rates of hepatic mitochondrial fat oxidation by 40%. Six weeks of CRMP treatment reduced hepatic triglycerides in both nonhuman primate models independently of changes in body weight, food intake, body temperature, or adverse reactions. CRMP treatment was also associated with a 20 to 30% reduction in fasting plasma triglycerides and low-density lipoprotein (LDL)-cholesterol in dysmetabolic nonhuman primates. Oral administration of CRMP reduced endogenous glucose production by 18%, attributable to a 20% reduction in hepatic acetyl-coenzyme A (CoA) content [as assessed by whole-body ß-hydroxybutyrate (ß-OHB) turnover] and pyruvate carboxylase flux. Collectively, these studies provide proof-of-concept data to support the development of liver-targeted mitochondrial uncouplers for the treatment of metabolic syndrome in humans.


Assuntos
Preparações de Ação Retardada/uso terapêutico , Dislipidemias/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ionóforos de Próton/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Macaca mulatta , Masculino , Obesidade/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos
6.
Nat Med ; 25(3): 526-528, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30733621

RESUMO

In the version of this article originally published, the VPC and VCS flux data shown in Fig. 6e,f were inadvertently duplicated from Fig. 5j,k. The correct data are now shown in Fig. 6e,f. In these corrected data, VPC flux in response to chronic oral metformin treatment was still significantly decreased (Fig. 6e), and there was still no impact of metformin on VCS flux (Fig. 6f). Therefore, the text describing these data remains the same and this correction does not change the conclusion of this study.

7.
Nat Commun ; 9(1): 498, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386503

RESUMO

The originally published version of this Article contained an error in Equation 30, which was inadvertently introduced during the production process. This has now been corrected in the PDF and HTML versions of the Article.

8.
Nat Med ; 24(9): 1384-1394, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30038219

RESUMO

Metformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unclear, though it has been suggested to act, at least partially, by mitochondrial complex I inhibition. Here we show that clinically relevant concentrations of plasma metformin achieved by acute intravenous, acute intraportal or chronic oral administration in awake normal and diabetic rats inhibit gluconeogenesis from lactate and glycerol but not from pyruvate and alanine, implicating an increased cytosolic redox state in mediating metformin's antihyperglycemic effect. All of these effects occurred independently of complex I inhibition, evidenced by unaltered hepatic energy charge and citrate synthase flux. Normalizing the cytosolic redox state by infusion of methylene blue or substrates that contribute to gluconeogenesis independently of the cytosolic redox state abrogated metformin-mediated inhibition of gluconeogenesis in vivo. Additionally, in mice expressing constitutively active acetyl-CoA carboxylase, metformin acutely decreased hepatic glucose production and increased the hepatic cytosolic redox state without altering hepatic triglyceride content or gluconeogenic enzyme expression. These studies demonstrate that metformin, at clinically relevant plasma concentrations, inhibits hepatic gluconeogenesis in a redox-dependent manner independently of reductions in citrate synthase flux, hepatic nucleotide concentrations, acetyl-CoA carboxylase activity, or gluconeogenic enzyme protein expression.


Assuntos
Gluconeogênese/efeitos dos fármacos , Metformina/farmacologia , Acetil-CoA Carboxilase/metabolismo , Adenilato Quinase/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Di-Hidroxiacetona/metabolismo , Modelos Animais de Doenças , Injeções Intravenosas , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metformina/administração & dosagem , Camundongos , Oxirredução , Fosforilação/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Ratos Sprague-Dawley , Estreptozocina
9.
Nat Commun ; 8(1): 798, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986525

RESUMO

Hepatic mitochondria play a central role in the regulation of intermediary metabolism and maintenance of normoglycemia, and there is great interest in assessing rates of hepatic mitochondrial citrate synthase flux (V CS) and pyruvate carboxylase flux (V PC) in vivo. Here, we show that a positional isotopomer NMR tracer analysis (PINTA) method can be used to non-invasively assess rates of V CS and V PC fluxes using a combined NMR/gas chromatography-mass spectrometry analysis of plasma following infusion of [3-13C]lactate and glucose tracer. PINTA measures V CS and V PC fluxes over a wide range of physiological conditions with minimal pyruvate cycling and detects increased hepatic V CS following treatment with a liver-targeted mitochondrial uncoupler. Finally, validation studies in humans demonstrate that the V PC/V CS ratio measured by PINTA is similar to that determined by in vivo NMR spectroscopy. This method will provide investigators with a relatively simple tool to non-invasively examine the role of altered hepatic mitochondrial metabolism.Liver mitochondrial metabolism plays an important role for glucose and lipid homeostasis and its alterations contribute to metabolic disorders, including fatty liver and diabetes. Here Perry et al. develop a method for the measurement of hepatic fluxes by using lactate and glucose tracers in combination with NMR spectroscopy.


Assuntos
Citrato (si)-Sintase/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Piruvato Carboxilase/metabolismo , Acetatos , Animais , Isótopos de Carbono , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Gasosa-Espectrometria de Massas , Ácido Glutâmico , Humanos , Ácido Láctico , Espectroscopia de Ressonância Magnética , Masculino , Ácido Pirúvico/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA