Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO J ; 41(1): e109519, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34786732

RESUMO

Mitochondrial ribosomes are complex molecular machines indispensable for respiration. Their assembly involves the import of several dozens of mitochondrial ribosomal proteins (MRPs), encoded in the nuclear genome, into the mitochondrial matrix. Proteomic and structural data as well as computational predictions indicate that up to 25% of yeast MRPs do not have a conventional N-terminal mitochondrial targeting signal (MTS). We experimentally characterized a set of 15 yeast MRPs in vivo and found that five use internal MTSs. Further analysis of a conserved model MRP, Mrp17/bS6m, revealed the identity of the internal targeting signal. Similar to conventional MTS-containing proteins, the internal sequence mediates binding to TOM complexes. The entire sequence of Mrp17 contains positive charges mediating translocation. The fact that these sequence properties could not be reliably predicted by standard methods shows that mitochondrial protein targeting is more versatile than expected. We hypothesize that structural constraints imposed by ribosome assembly interfaces may have disfavored N-terminal presequences and driven the evolution of internal targeting signals in MRPs.


Assuntos
Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Sinais Direcionadores de Proteínas , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Mitocôndrias/metabolismo , Modelos Biológicos , Homologia de Sequência de Aminoácidos
2.
Trends Biochem Sci ; 45(8): 650-667, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32409196

RESUMO

While targeting of proteins synthesized in the cytosol to any organelle is complex, mitochondria present the most challenging of destinations. First, import of nuclear-encoded proteins needs to be balanced with production of mitochondrial-encoded ones. Moreover, as mitochondria are divided into distinct subdomains, their proteins harbor a number of different targeting signals and biophysical properties. While translocation into the mitochondrial membranes has been well studied, the cytosolic steps of protein import remain poorly understood. Here, we review current knowledge on mRNA and protein targeting to mitochondria, as well as recent advances in our understanding of the cellular programs that respond to accumulation of mitochondrial precursor proteins in the cytosol, thus linking defects in targeting-capacity to signaling.


Assuntos
Citosol/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas de Choque Térmico/metabolismo , Homeostase , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Partícula de Reconhecimento de Sinal/metabolismo , Transdução de Sinais
3.
Nature ; 561(7724): 561-564, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30224749

RESUMO

Eukaryotic cells traffic proteins and lipids between different compartments using protein-coated vesicles and tubules. The retromer complex is required to generate cargo-selective tubulovesicular carriers from endosomal membranes1-3. Conserved in eukaryotes, retromer controls the cellular localization and homeostasis of hundreds of transmembrane proteins, and its disruption is associated with major neurodegenerative disorders4-7. How retromer is assembled and how it is recruited to form coated tubules is not known. Here we describe the structure of the retromer complex (Vps26-Vps29-Vps35) assembled on membrane tubules with the bin/amphiphysin/rvs-domain-containing sorting nexin protein Vps5, using cryo-electron tomography and subtomogram averaging. This reveals a membrane-associated Vps5 array, from which arches of retromer extend away from the membrane surface. Vps35 forms the 'legs' of these arches, and Vps29 resides at the apex where it is free to interact with regulatory factors. The bases of the arches connect to each other and to Vps5 through Vps26, and the presence of the same arches on coated tubules within cells confirms their functional importance. Vps5 binds to Vps26 at a position analogous to the previously described cargo- and Snx3-binding site, which suggests the existence of distinct retromer-sorting nexin assemblies. The structure provides insight into the architecture of the coat and its mechanism of assembly, and suggests that retromer promotes tubule formation by directing the distribution of sorting nexin proteins on the membrane surface while providing a scaffold for regulatory-protein interactions.


Assuntos
Chaetomium/química , Chaetomium/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/ultraestrutura , Chaetomium/metabolismo , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Transporte Proteico , Nexinas de Classificação/química , Nexinas de Classificação/metabolismo , Nexinas de Classificação/ultraestrutura , Proteínas de Transporte Vesicular/metabolismo
4.
EMBO Rep ; 17(7): 1044-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266708

RESUMO

Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi-scale analysis approach to study the molecular structure of Cvt vesicles. We report the oligomeric nature of the major Cvt cargo Ape1 with a combined 2.8 Å X-ray and negative stain EM structure, as well as the secondary cargo Ams1 with a 6.3 Å cryo-EM structure. We show that the major dodecameric cargo prApe1 exhibits a tendency to form higher-order chain structures that are broken upon interaction with the receptor Atg19 in vitro The stoichiometry of these cargo-receptor complexes is key to maintaining the size of the Cvt aggregate in vivo Using correlative light and electron microscopy, we further visualize key stages of Cvt vesicle biogenesis. Our findings suggest that Atg19 interaction limits Ape1 aggregate size while serving as a vehicle for vacuolar delivery of tetrameric Ams1.


Assuntos
Autofagia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidases/química , Aminopeptidases/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Membranas/metabolismo , Modelos Biológicos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética
5.
J Struct Biol ; 197(2): 83-93, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27368127

RESUMO

Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens.


Assuntos
Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/instrumentação , Tomografia com Microscopia Eletrônica/métodos , Microscopia/instrumentação , Microscopia/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Software
6.
Sci Adv ; 8(2): eabk2141, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020435

RESUMO

Crucial metabolic functions of peroxisomes rely on a variety of peroxisomal membrane proteins (PMPs). While mRNA transcripts of PMPs were shown to be colocalized with peroxisomes, the process by which PMPs efficiently couple translation with targeting to the peroxisomal membrane remained elusive. Here, we combine quantitative electron microscopy with proximity-specific ribosome profiling and reveal that translation of specific PMPs occurs on the surface of peroxisomes in the yeast Saccharomyces cerevisiae. This places peroxisomes alongside chloroplasts, mitochondria, and the endoplasmic reticulum as organelles that use localized translation for ensuring correct insertion of hydrophobic proteins into their membranes. Moreover, the correct targeting of these transcripts to peroxisomes is crucial for peroxisomal and cellular function, emphasizing the importance of localized translation for cellular physiology.

7.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694322

RESUMO

Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease.


Assuntos
Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Mol Biol Cell ; 32(8): 664-674, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596095

RESUMO

For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Cell Rep ; 35(1): 108936, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826901

RESUMO

Most mitochondrial proteins are synthesized as precursors in the cytosol and post-translationally transported into mitochondria. The mitochondrial surface protein Tom70 acts at the interface of the cytosol and mitochondria. In vitro import experiments identified Tom70 as targeting receptor, particularly for hydrophobic carriers. Using in vivo methods and high-content screens, we revisit the question of Tom70 function and considerably expand the set of Tom70-dependent mitochondrial proteins. We demonstrate that the crucial activity of Tom70 is its ability to recruit cytosolic chaperones to the outer membrane. Indeed, tethering an unrelated chaperone-binding domain onto the mitochondrial surface complements most of the defects caused by Tom70 deletion. Tom70-mediated chaperone recruitment reduces the proteotoxicity of mitochondrial precursor proteins, particularly of hydrophobic inner membrane proteins. Thus, our work suggests that the predominant function of Tom70 is to tether cytosolic chaperones to the outer mitochondrial membrane, rather than to serve as a mitochondrion-specifying targeting receptor.


Assuntos
Citosol/metabolismo , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Proteínas de Membrana/metabolismo , Agregados Proteicos , Ligação Proteica
10.
J Cell Biol ; 218(8): 2797-2811, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31289126

RESUMO

Genetic screens using high-throughput fluorescent microscopes have generated large datasets, contributing many cell biological insights. Such approaches cannot tackle questions requiring knowledge of ultrastructure below the resolution limit of fluorescent microscopy. Electron microscopy (EM) reveals detailed cellular ultrastructure but requires time-consuming sample preparation, limiting throughput. Here we describe a robust method for screening by high-throughput EM. Our approach uses combinations of fluorophores as barcodes to uniquely mark each cell type in mixed populations and correlative light and EM (CLEM) to read the barcode of each cell before it is imaged by EM. Coupled with an easy-to-use software workflow for correlation, segmentation, and computer image analysis, our method, called "MultiCLEM," allows us to extract and analyze multiple cell populations from each EM sample preparation. We demonstrate several uses for MultiCLEM with 15 different yeast variants. The methodology is not restricted to yeast, can be scaled to higher throughput, and can be used in multiple ways to enable EM to become a powerful screening technique.


Assuntos
Ensaios de Triagem em Larga Escala , Microscopia Eletrônica , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Pressão Osmótica , Peroxissomos/metabolismo , Fenótipo , Saccharomyces cerevisiae/ultraestrutura
11.
Elife ; 62017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29148969

RESUMO

COPI-coated vesicles mediate trafficking within the Golgi apparatus and from the Golgi to the endoplasmic reticulum. The structures of membrane protein coats, including COPI, have been extensively studied with in vitro reconstitution systems using purified components. Previously we have determined a complete structural model of the in vitro reconstituted COPI coat (Dodonova et al., 2017). Here, we applied cryo-focused ion beam milling, cryo-electron tomography and subtomogram averaging to determine the native structure of the COPI coat within vitrified Chlamydomonas reinhardtii cells. The native algal structure resembles the in vitro mammalian structure, but additionally reveals cargo bound beneath ß'-COP. We find that all coat components disassemble simultaneously and relatively rapidly after budding. Structural analysis in situ, maintaining Golgi topology, shows that vesicles change their size, membrane thickness, and cargo content as they progress from cis to trans, but the structure of the coat machinery remains constant.


Assuntos
Chlamydomonas reinhardtii/química , Complexo I de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica
12.
Elife ; 62017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019322

RESUMO

The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3-45 s lifetimes, the ESCRT-III assemblies accumulated 75-200 Snf7 and 15-50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity. An all-or-none step led to final release of ESCRT-III and Vps4. Tomographic electron microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding. We propose a model in which multiple Vps4 hexamers (four or more) draw together several ESCRT-III filaments. This process induces cargo crowding and inward membrane buckling, followed by constriction of the nascent bud neck and ultimately ILV generation by vesicle fission.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tomografia com Microscopia Eletrônica , Microscopia de Fluorescência
13.
FEBS Lett ; 590(13): 1877-95, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27008928

RESUMO

Electron microscopy (EM) is an invaluable tool to study the interactions of viruses with cells, and the ultrastructural changes induced in host cells by virus infection. Light microscopy (LM) is a complementary tool with the potential to locate rare events, label specific components, and obtain dynamic information. The combination of LM and EM in correlative light and electron microscopy (CLEM) is particularly powerful. It can be used to complement a static EM image with dynamic data from live imaging, identify the ultrastructure observed in LM, or, conversely, provide molecular specificity data for a known ultrastructure. Here, we describe methods and strategies for CLEM, discuss their advantages and limitations, and review applications of CLEM to study virus-host interactions.


Assuntos
Células/ultraestrutura , Células/virologia , Interações Hospedeiro-Patógeno , Microscopia Eletrônica/métodos , Vírus/ultraestrutura , Animais , Humanos , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA