Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(5): e22919, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37071464

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes injury to multiple organ systems, including the brain. SARS-CoV-2's neuropathological mechanisms may include systemic inflammation and hypoxia, as well as direct cell damage resulting from viral infections of neurons and glia. How the virus directly causes injury to brain cells, acutely and over the long term, is not well understood. In order to gain insight into this process, we studied the neuropathological effects of open reading frame 3a (ORF3a), a SARS-CoV-2 accessory protein that is a key pathological factor of the virus. Forced ORF3a brain expression in mice caused the rapid onset of neurological impairment, neurodegeneration, and neuroinflammation-key neuropathological features found in coronavirus disease (COVID-19, which is caused by SARS-CoV-2 infection). Furthermore, ORF3a expression blocked autophagy progression in the brain and caused the neuronal accumulation of α-synuclein and glycosphingolipids, all of which are linked to neurodegenerative disease. Studies with ORF3-expressing HeLa cells confirmed that ORF3a disrupted the autophagy-lysosomal pathway and blocked glycosphingolipid degradation, resulting in their accumulation. These findings indicate that, in the event of neuroinvasion by SARS-CoV-2, ORF3a expression in brain cells may drive neuropathogenesis and be an important mediator of both short- and long-term neurological manifestations of COVID-19.


Assuntos
COVID-19 , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Autofagia , Encéfalo/patologia , COVID-19/patologia , Células HeLa , Homeostase , Lisossomos , Doenças Neurodegenerativas/patologia , Fases de Leitura Aberta , SARS-CoV-2 , Esfingolipídeos
2.
J Lipid Res ; 64(12): 100463, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871851

RESUMO

GM1 gangliosidosis is a neurodegenerative disorder caused by mutations in the GLB1 gene, which encodes lysosomal ß-galactosidase. The enzyme deficiency blocks GM1 ganglioside catabolism, leading to accumulation of GM1 ganglioside and asialo-GM1 ganglioside (GA1 glycolipid) in brain. This disease can present in varying degrees of severity, with the level of residual ß-galactosidase activity primarily determining the clinical course. Glb1 null mouse models, which completely lack ß-galactosidase expression, exhibit a less severe form of the disease than expected from the comparable deficiency in humans, suggesting a potential species difference in the GM1 ganglioside degradation pathway. We hypothesized this difference may involve the sialidase NEU3, which acts on GM1 ganglioside to produce GA1 glycolipid. To test this hypothesis, we generated Glb1/Neu3 double KO (DKO) mice. These mice had a significantly shorter lifespan, increased neurodegeneration, and more severe ataxia than Glb1 KO mice. Glb1/Neu3 DKO mouse brains exhibited an increased GM1 ganglioside to GA1 glycolipid ratio compared with Glb1 KO mice, indicating that NEU3 mediated GM1 ganglioside to GA1 glycolipid conversion in Glb1 KO mice. The expression of genes associated with neuroinflammation and glial responses were enhanced in Glb1/Neu3 DKO mice compared with Glb1 KO mice. Mouse NEU3 more efficiently converted GM1 ganglioside to GA1 glycolipid than human NEU3 did. Our findings highlight NEU3's role in ameliorating the consequences of Glb1 deletion in mice, provide insights into NEU3's differential effects between mice and humans in GM1 gangliosidosis, and offer a potential therapeutic approach for reducing toxic GM1 ganglioside accumulation in GM1 gangliosidosis patients.


Assuntos
Gangliosidose GM1 , Animais , Humanos , Camundongos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , beta-Galactosidase/uso terapêutico , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M1)/uso terapêutico , Gangliosidose GM1/genética , Glicolipídeos , Neuraminidase/genética , Neuraminidase/uso terapêutico
3.
J Lipid Res ; 63(6): 100225, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568252

RESUMO

Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that serves as a potent extracellular signaling molecule. Metabolic regulation of extracellular S1P levels impacts key cellular activities through altered S1P receptor signaling. Although the pathway through which S1P is degraded within the cell and thereby eliminated from reuse has been previously described, the mechanism used for S1P cellular uptake and the subsequent recycling of its sphingoid base into the sphingolipid synthesis pathway is not completely understood. To identify the genes within this S1P uptake and recycling pathway, we performed a genome-wide CRISPR/Cas9 KO screen using a positive-selection scheme with Shiga toxin, which binds a cell-surface glycosphingolipid receptor, globotriaosylceramide (Gb3), and causes lethality upon internalization. The screen was performed in HeLa cells with their sphingolipid de novo pathway disabled so that Gb3 cell-surface expression was dependent on salvage of the sphingoid base of S1P taken up from the medium. The screen identified a suite of genes necessary for S1P uptake and the recycling of its sphingoid base to synthesize Gb3, including two lipid phosphatases, PLPP3 (phospholipid phosphatase 3) and SGPP1 (S1P phosphatase 1). The results delineate a pathway in which plasma membrane-bound PLPP3 dephosphorylates extracellular S1P to sphingosine, which then enters cells and is rephosphorylated to S1P by the sphingosine kinases. This rephosphorylation step is important to regenerate intracellular S1P as a branch-point substrate that can be routed either for dephosphorylation to salvage sphingosine for recycling into complex sphingolipid synthesis or for degradation to remove it from the sphingolipid synthesis pathway.


Assuntos
Lisofosfolipídeos , Esfingosina , Células HeLa , Humanos , Lisofosfolipídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados
4.
J Biol Chem ; 295(13): 4341-4349, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32029474

RESUMO

Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known. To identify genes that positively regulate membrane sphingolipid levels, here we employed a genome-wide CRISPR/Cas9 loss-of-function screen in HeLa cells using selection for resistance to Shiga toxin, which uses a plasma membrane-associated glycosphingolipid, globotriaosylceramide (Gb3), for its uptake. The screen identified several genes in the sphingolipid biosynthetic pathway that are required for Gb3 synthesis, and it also identified the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor widely involved in development and physiology, as being required for Gb3 biosynthesis. AHR bound and activated the gene promoter of serine palmitoyltransferase small subunit A (SPTSSA), which encodes a subunit of the serine palmitoyltransferase that catalyzes the first and rate-limiting step in de novo sphingolipid biosynthesis. AHR knockout HeLa cells exhibited significantly reduced levels of cell-surface Gb3, and both AHR knockout HeLa cells and tissues from Ahr knockout mice displayed decreased sphingolipid content as well as significantly reduced expression of several key genes in the sphingolipid biosynthetic pathway. The sciatic nerve of Ahr knockout mice exhibited both reduced ceramide content and reduced myelin thickness. These results indicate that AHR up-regulates sphingolipid levels and is important for full axon myelination, which requires elevated levels of membrane sphingolipids.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Resistência à Doença/genética , Globosídeos/genética , Receptores de Hidrocarboneto Arílico/genética , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/biossíntese , Triexosilceramidas/genética , Animais , Sistemas CRISPR-Cas/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Genoma Humano/genética , Células HeLa , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Lipídeos/genética , Camundongos , Camundongos Knockout , Toxina Shiga/farmacologia , Transdução de Sinais/genética , Esfingolipídeos/genética
5.
Proc Natl Acad Sci U S A ; 114(28): E5664-E5672, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652347

RESUMO

Here we investigated in primary human erythroid tissues a downstream element of the heterochronic let-7 miRNA pathway, the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), for its potential to affect the hemoglobin profiles in human erythroblasts. Comparison of adult bone marrow to fetal liver lysates demonstrated developmental silencing in IGF2BP1. Erythroid-specific overexpression of IGF2BP1 caused a nearly complete and pancellular reversal of the adult pattern of hemoglobin expression toward a more fetal-like phenotype. The reprogramming of hemoglobin expression was achieved at the transcriptional level by increased gamma-globin combined with decreased beta-globin transcripts resulting in gamma-globin rising to 90% of total beta-like mRNA. Delta-globin mRNA was reduced to barely detectable levels. Alpha-globin levels were not significantly changed. Fetal hemoglobin achieved levels of 68.6 ± 3.9% in the IGF2BP1 overexpression samples compared with 5.0 ± 1.8% in donor matched transduction controls. In part, these changes were mediated by reduced protein expression of the transcription factor BCL11A. mRNA stability and polysome studies suggest IGF2BP1 mediates posttranscriptional loss of BCL11A. These results suggest a mechanism for chronoregulation of fetal and adult hemoglobin expression in humans.


Assuntos
Proteínas de Transporte/metabolismo , Eritroblastos/metabolismo , Hemoglobina Fetal/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Medula Óssea/metabolismo , Células HEK293 , Proteína HMGA2/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fígado/embriologia , Fenótipo , RNA Mensageiro/metabolismo , Proteínas Repressoras , Globinas beta/metabolismo , gama-Globinas/metabolismo
6.
J Transl Med ; 15(1): 169, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768505

RESUMO

BACKGROUND: In humans, the heterochronic cascade composed of the RNA-binding protein LIN28 and its major target, the let-7 family of microRNAs (miRNAs), is highly regulated during human erythroid ontogeny. Additionally, down-regulation of the let-7 miRNAs in cultured adult CD34(+) cells or the over-expression of LIN28 in cultured erythrocytes from pediatric patients with HbSS genotype causes increased levels of fetal hemoglobin (HbF) in the range of 19-40% of the total. Therefore, we hypothesized that focused targeting of individual let-7 miRNA family members would exhibit regulatory effect on HbF expression in human adult erythroblasts. METHODS: The expression levels of mature let-7 family members were measured by RT-qPCR in purified cell populations sorted from peripheral blood. To study the effects of let-7 miRNAs upon globin expression, a lentiviral construct that incorporated the tough decoy (TuD) design to target let-7a or let-7b was compared with empty vector controls. Transductions were performed in CD34(+) cells from adult healthy volunteers cultivated ex vivo in erythropoietin-supplemented serum-free media for 21 days. Downstream analyses included RT-qPCR, Western blot and HPLC for the characterization of adult and fetal hemoglobins. RESULTS: The expression of individual let-7 miRNA family members in adult peripheral blood cell populations demonstrated that let-7a and let-7b miRNAs are expressed at much higher levels than the other let-7 family members in purified adult human blood cell subsets with expression being predominantly in reticulocytes. Therefore, we focused this study upon the targeted inhibition of let-7a and let-7b with the TuD design to explore its effects upon developmentally-timed erythroid genes. Let-7a-TuD transductions significantly increased gamma-globin mRNA expression and HbF to an average of 38%. Let-7a-TuD also significantly decreased the mRNA expression of some ontogeny-regulated erythroid genes, namely CA1 and GCNT2. In addition, the erythroid-related transcription factors BCL11A and HMGA2 were down- and up-regulated, respectively, by let-7a-TuD, while ZBTB7A, KLF1 and SOX6 remained unchanged. CONCLUSIONS: Overall, our data demonstrate that let-7 miRNAs are differentially expressed in human hematopoietic cells, and that targeted inhibition of the highly-expressed species of this family is sufficient for developmentally-specific changes in gamma-globin expression and HbF levels.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/metabolismo , Adulto , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Proliferação de Células/genética , Células Cultivadas , Hemoglobina Fetal , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras , Reticulócitos/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo
7.
Blood ; 126(5): 665-72, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25979948

RESUMO

Induction of fetal hemoglobin (HbF) production in adult erythrocytes can reduce the severity of sickle cell disease and ß-thalassemia. Transcription of ß-globin genes is regulated by the distant locus control region (LCR), which is brought into direct gene contact by the LDB1/GATA-1/TAL1/LMO2-containing complex. Inhibition of G9a H3K9 methyltransferase by the chemical compound UNC0638 activates fetal and represses adult ß-globin gene expression in adult human hematopoietic precursor cells, but the underlying mechanisms are unclear. Here we studied UNC0638 effects on ß-globin gene expression using ex vivo differentiation of CD34(+) erythroid progenitor cells from peripheral blood of healthy adult donors. UNC0638 inhibition of G9a caused dosed accumulation of HbF up to 30% of total hemoglobin in differentiated cells. Elevation of HbF was associated with significant activation of fetal γ-globin and repression of adult ß-globin transcription. Changes in gene expression were associated with widespread loss of H3K9me2 in the locus and gain of LDB1 complex occupancy at the γ-globin promoters as well as de novo formation of LCR/γ-globin contacts. Our findings demonstrate that G9a establishes epigenetic conditions preventing activation of γ-globin genes during differentiation of adult erythroid progenitor cells. In this view, manipulation of G9a represents a promising epigenetic approach for treatment of ß-hemoglobinopathies.


Assuntos
Hemoglobina Fetal/biossíntese , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Região de Controle de Locus Gênico , gama-Globinas/genética , Adulto , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Diferenciação Celular , Proteínas de Ligação a DNA/sangue , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Eritropoese , Antígenos de Histocompatibilidade , Humanos , Técnicas In Vitro , Proteínas com Domínio LIM/sangue , Modelos Biológicos , Regiões Promotoras Genéticas , Quinazolinas/farmacologia , Fatores de Transcrição/sangue , Talassemia beta/sangue , Talassemia beta/tratamento farmacológico , Talassemia beta/genética
8.
Blood ; 122(6): 1034-41, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23798711

RESUMO

Reactivation of fetal hemoglobin (HbF) holds therapeutic potential for sickle cell disease and ß-thalassemias. In human erythroid cells and hematopoietic organs, LIN28B and its targeted let-7 microRNA family, demonstrate regulated expression during the fetal-to-adult developmental transition. To explore the effects of LIN28B in human erythroid cell development, lentiviral transduction was used to knockdown LIN28B expression in erythroblasts cultured from human umbilical cord CD34+ cells. The subsequent reduction in LIN28B expression caused increased expression of let-7 and significantly reduced HbF expression. Conversely, LIN28B overexpression in cultured adult erythroblasts reduced the expression of let-7 and significantly increased HbF expression. Cellular maturation was maintained including enucleation. LIN28B expression in adult erythroblasts increased the expression of γ-globin, and the HbF content of the cells rose to levels >30% of their hemoglobin. Expression of carbonic anhydrase I, glucosaminyl (N-acetyl) transferase 2, and miR-96 (three additional genes marking the transition from fetal-to-adult erythropoiesis) were reduced by LIN28B expression. The transcription factor BCL11A, a well-characterized repressor of γ-globin expression, was significantly down-regulated. Independent of LIN28B, experimental suppression of let-7 also reduced BCL11A expression and significantly increased HbF expression. LIN28B expression regulates HbF levels and causes adult human erythroblasts to differentiate with a more fetal-like phenotype.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Eritroblastos/citologia , Eritrócitos/citologia , Hemoglobina Fetal/metabolismo , Regulação da Expressão Gênica , Antígenos CD34/metabolismo , Anidrase Carbônica I/metabolismo , Técnicas de Cultura de Células , Sangue Fetal/citologia , Hemoglobina A/metabolismo , Humanos , MicroRNAs/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Fenótipo , Proteínas de Ligação a RNA
9.
Br J Haematol ; 167(5): 692-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25209728

RESUMO

In transfusional iron overload, extra-hepatic iron distribution differs, depending on the underlying condition. Relative mechanisms of plasma non-transferrin bound iron (NTBI) generation may account for these differences. Markers of iron metabolism (plasma NTBI, labile iron, hepcidin, transferrin, monocyte SLC40A1 [ferroportin]), erythropoiesis (growth differentiation factor 15, soluble transferrin receptor) and tissue hypoxia (erythropoietin) were compared in patients with Thalassaemia Major (TM), Sickle Cell Disease and Diamond-Blackfan Anaemia (DBA), with matched transfusion histories. The most striking differences between these conditions were relationships of NTBI to erythropoietic markers, leading us to propose three mechanisms of NTBI generation: iron overload (all), ineffective erythropoiesis (predominantly TM) and low transferrin-iron utilization (DBA).


Assuntos
Anemia de Diamond-Blackfan/sangue , Anemia Falciforme/sangue , Ferro/sangue , Talassemia/sangue , Transferrina , Adolescente , Adulto , Anemia de Diamond-Blackfan/terapia , Anemia Falciforme/terapia , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Transfusão de Sangue , Eritropoese , Feminino , Humanos , Sobrecarga de Ferro/sangue , Sobrecarga de Ferro/etiologia , Masculino , Talassemia/terapia
10.
Am J Respir Crit Care Med ; 185(7): 744-55, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22268136

RESUMO

RATIONALE: Sepsis, a leading cause of death worldwide, involves widespread activation of inflammation, massive activation of coagulation, and lymphocyte apoptosis. Calpains, calcium-activated cysteine proteases, have been shown to increase inflammatory reactions and lymphocyte apoptosis. Moreover, calpain plays an essential role in microparticle release. OBJECTIVES: We investigated the contribution of calpain in eliciting tissue damage during sepsis. METHODS: To test our hypothesis, we induced polymicrobial sepsis by cecal ligation and puncture in wild-type (WT) mice and transgenic mice expressing high levels of calpastatin, a calpain-specific inhibitor. MEASUREMENTS AND MAIN RESULTS: In WT mice, calpain activity increased transiently peaking at 6 hours after cecal ligation and puncture surgery. Calpastatin overexpression improved survival, organ dysfunction (including lung, kidney, and liver damage), and lymphocyte apoptosis. It decreased the sepsis-induced systemic proinflammatory response and disseminated intravascular coagulation, by reducing the number of procoagulant circulating microparticles and therefore delaying thrombin generation. The deleterious effect of microparticles in this model was confirmed by transferring microparticles from septic WT to septic transgenic mice, worsening their survival and coagulopathy. CONCLUSIONS: These results demonstrate an important role of the calpain/calpastatin system in coagulation/inflammation pathways during sepsis, because calpain inhibition is associated with less severe disseminated intravascular coagulation and better overall outcomes in sepsis.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Sepse/fisiopatologia , Animais , Apoptose/fisiologia , Calpaína/fisiologia , Micropartículas Derivadas de Células/fisiologia , Citocinas/fisiologia , Modelos Animais de Doenças , Coagulação Intravascular Disseminada/fisiopatologia , Linfócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Insuficiência de Múltiplos Órgãos/fisiopatologia , NF-kappa B/fisiologia , Sepse/mortalidade , Tromboplastina/fisiologia
11.
Cytometry A ; 81(2): 165-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22170815

RESUMO

Erythroid biology research involving rhesus macaques has been applied to several topics including malaria, hemoglobinopathy and gene therapy research. However, analyses of the rhesus red blood cells are limited by the inability to identify and sort those cells in research blood samples using flow cytometry. Here it is reported that the BRIC 6 hybridoma clone raised to the human erythroid surface molecule (referred to as CD233, Band 3, AE1, or SLC4A1) produces cross-reactive and erythroid-specific antibodies for flow cytometric detection and sorting of rhesus macaque erythrocytes.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/imunologia , Anticorpos Monoclonais/imunologia , Reações Cruzadas/imunologia , Eritrócitos/imunologia , Citometria de Fluxo/métodos , Macaca mulatta/imunologia , Sequência de Aminoácidos , Animais , Proteína 1 de Troca de Ânion do Eritrócito/química , Eritrócitos/citologia , Glicoforinas/metabolismo , Humanos , Dados de Sequência Molecular
12.
Blood ; 114(1): 181-6, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19414861

RESUMO

In thalassemia and other iron loading anemias, ineffective erythropoiesis and erythroid signaling molecules are thought to cause inappropriate suppression of a small peptide produced by hepatocytes named hepcidin. Previously, it was reported that the erythrokine GDF15 is expressed at very high levels in thalassemia and suppresses hepcidin expression. In this study, erythroblast expression of a second molecule named twisted gastrulation (TWSG1) was explored as a potential erythroid regulator of hepcidin. Transcriptome analyses suggest TWSG1 is produced during the earlier stages of erythropoiesis. Hepcidin suppression assays demonstrated inhibition by TWSG1 as measured by quantitative polymerase chain reaction (PCR) in dosed assays (1-1000 ng/mL TWSG1). In human cells, TWSG1 suppressed hepcidin indirectly by inhibiting the signaling effects and associated hepcidin up-regulation by bone morphogenic proteins 2 and 4 (BMP2/BMP4). In murine hepatocytes, hepcidin expression was inhibited by murine Twsg1 in the absence of additional BMP. In vivo studies of Twsg1 expression were performed in healthy and thalassemic mice. Twsg1 expression was significantly increased in the spleen, bone marrow, and liver of the thalassemic animals. These data demonstrate that twisted gastrulation protein interferes with BMP-mediated hepcidin expression and may act with GDF15 to dysregulate iron homeostasis in thalassemia syndromes.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Citocinas/fisiologia , Eritropoese/fisiologia , Proteínas/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteína Morfogenética Óssea 2/fisiologia , Proteína Morfogenética Óssea 4/fisiologia , Citocinas/genética , Eritropoese/genética , Feminino , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/fisiologia , Hepatócitos/citologia , Hepatócitos/fisiologia , Hepcidinas , Homeostase , Humanos , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas/genética , Proteínas Smad/fisiologia , Talassemia/sangue , Talassemia/genética , Talassemia/patologia , Talassemia/fisiopatologia
13.
Blood ; 114(11): 2299-306, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19597182

RESUMO

Therapeutic regulation of globin genes is a primary goal of translational research aimed toward hemoglobinopathies. Signal transduction was used to identify chromatin modifications and transcription factor expression patterns that are associated with globin gene regulation. Histone modification and transcriptome profiling were performed using adult primary CD34(+) cells cultured with cytokine combinations that produced low versus high levels of gamma-globin mRNA and fetal hemoglobin (HbF). Embryonic, fetal, and adult globin transcript and protein expression patterns were determined for comparison. Chromatin immunoprecipitation assays revealed RNA polymerase II occupancy and histone tail modifications consistent with transcriptional activation only in the high-HbF culture condition. Transcriptome profiling studies demonstrated reproducible changes in expression of nuclear transcription factors associated with high HbF. Among the 13 genes that demonstrated differential transcript levels, 8 demonstrated nuclear protein expression levels that were significantly changed by cytokine signal transduction. Five of the 8 genes are recognized regulators of erythropoiesis or globin genes (MAFF, ID2, HHEX, SOX6, and EGR1). Thus, cytokine-mediated signal transduction in adult erythroid cells causes significant changes in the pattern of globin gene and protein expression that are associated with distinct histone modifications as well as nuclear reprogramming of erythroid transcription factors.


Assuntos
Citocinas/metabolismo , Células Eritroides/metabolismo , Hemoglobina Fetal/biossíntese , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Adulto , Antígenos CD34 , Células Cultivadas , Células Eritroides/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hemoglobinopatias/metabolismo , Humanos , RNA Polimerase II/metabolismo , Transdução de Sinais , Transcrição Gênica
14.
Pediatr Blood Cancer ; 56(1): 103-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21108444

RESUMO

BACKGROUND: Treatment-associated fetal hemoglobin (HbF) expression patterns in children with sickle cell disease (SCD) have not been fully described. The objective of this study was to compare HbF expression profiles (HbF and F-cells) in the peripheral blood of pediatric SCD patients receiving hydroxyurea (HU), chronic transfusions (Tx) or no chronic therapy (Ctrl). PROCEDURE: Peripheral blood samples were collected from SCD patients between 1 month and 21 years of age and immunostained with anti-HbF and anti-HbA antibodies. Erythrocytes containing HbF (F-cells) were enumerated with this dual staining method. HbF was measured using chromatography (HPLC). RESULTS: Blood from 44 Ctrl patients ≤ 4 years of age was compared with that from older children (50 Ctrl, 17 HU, 17 Tx). Among the older children, the percentage of both HbF and F-cells in the Tx group was significantly decreased compared to the control (HbF 5.4 ± 4.2% vs. 11.0 ± 7.2%, P = 0.003; F-cells 30.2 ± 16.3% vs. 43.8 ± 20.4%, P = 0.0071). While the distribution of F-cells was significantly increased in the HU group (56.3 ± 17.1% vs. 43.8 ± 20.4%, P = 0.016), the increase in HbF was less robust (14.7 ± 6.4% vs. 11.0 ± 7.2%, P = 0.051). Positive correlations of HbF and F-cell distributions were noted in all groups (P < 0.0001 for all groups). In serial samples from individual patients, relatively static patterns of HbF and F-cell distribution were noted. CONCLUSION: Pediatric SCD patients possess distinct patterns of HbF switching and silencing in peripheral blood erythrocytes. Thereafter, erythrocyte HbF expression level and distribution are maintained with both patient- and treatment-specific patterns that may be useful for predicting the need or response to HbF-modulating therapy.


Assuntos
Anemia Falciforme/sangue , Eritrócitos Anormais/patologia , Hemoglobina Fetal/análise , Adolescente , Anemia Falciforme/terapia , Transfusão de Sangue , Criança , Pré-Escolar , Contagem de Eritrócitos , Humanos , Hidroxiureia/uso terapêutico , Lactente , Adulto Jovem
15.
iScience ; 24(8): 102901, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401678

RESUMO

In the finely regulated process of mammalian erythropoiesis, the path of the labile iron pool into mitochondria for heme production is not well understood. Existing models for erythropoiesis do not include a central role for the ubiquitous iron storage protein ferritin; one model proposes that incoming endosomal Fe3+ bound to transferrin enters the cytoplasm through an ion transporter after reduction to Fe2+ and is taken up into mitochondria through mitoferrin-1 transporter. Here, we apply a dual three-dimensional imaging and spectroscopic technique, based on scanned electron probes, to measure Fe3+ in ex vivo human hematopoietic stem cells. After seven days in culture, we observe cells displaying a highly specialized architecture with anchored clustering of mitochondria and massive accumulation of nanoparticles containing high iron concentrations localized to lysosomal storage depots, identified as ferritin. We hypothesize that lysosomal ferritin iron depots enable continued heme production after expulsion of most of the cellular machinery.

16.
iScience ; 23(3): 100957, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32179479

RESUMO

The SUSD4 (Sushi domain-containing protein 4) gene encodes a complement inhibitor that is frequently deleted in 1q41q42 microdeletion syndrome, a multisystem congenital disorder that includes neurodevelopmental abnormalities. To understand SUSD4's role in the mammalian nervous system, we analyzed Susd4 knockout (KO) mice. Susd4 KO mice exhibited significant defects in motor performance and significantly higher levels of anxiety-like behaviors. Susd4 KO brain had abnormal "hairy" basket cells surrounding Purkinje neurons within the cerebellum and significantly reduced dendritic spine density in hippocampal pyramidal neurons. Neurons and oligodendrocyte lineage cells of wild-type mice were found to express Susd4 mRNA. Protein expression of the complement component C1q was increased in the brains of Susd4 KO mice. Our data indicate that SUSD4 plays an important role in neuronal functions, possibly via the complement pathway, and that SUSD4 deletion may contribute to the nervous system abnormalities in patients with 1q41q42 deletions.

17.
Mol Ther Methods Clin Dev ; 17: 429-440, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32154328

RESUMO

Sickle cell disease (SCD) and ß-thalassemia are caused by structural abnormality or inadequate production of adult hemoglobin (HbA, α2ß2), respectively. Individuals with either disorder are asymptomatic before birth because fetal hemoglobin (HbF, α2γ2) is unaffected. Thus, reversal of the switch from HbF to HbA could reduce or even prevent symptoms these disorders. In this study, we show that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is one factor that could accomplish this goal. IGF2BP1 is a fetal factor that undergoes a transcriptional switch consistent with the transition from HbF to HbA. Lentivirus delivery of IGF2BP1 to CD34+ cells of healthy adult donors reversed hemoglobin production toward the fetal type in culture-differentiated erythroid cells. Analogous studies using patient-derived CD34+ cells revealed that IGF2BP1-dependent HbF induction could ameliorate the chain imbalance in ß-thalassemia or potently suppress expression of sickle ß-globin in SCD. In all cases, fetal γ-globin mRNA increased and adult ß-globin decreased due, in part, to formation of contacts between the locus control region (LCR) and γ-globin genes. We conclude that expression of IGF2BP1 in adult erythroid cells has the potential to maximize HbF expression in patients with severe ß-hemoglobin disorders by reversing the developmental γ- to ß-globin switch.

18.
Elife ; 82019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31880535

RESUMO

Sphingolipids are membrane and bioactive lipids that are required for many aspects of normal mammalian development and physiology. However, the importance of the regulatory mechanisms that control sphingolipid levels in these processes is not well understood. The mammalian ORMDL proteins (ORMDL1, 2 and 3) mediate feedback inhibition of the de novo synthesis pathway of sphingolipids by inhibiting serine palmitoyl transferase in response to elevated ceramide levels. To understand the function of ORMDL proteins in vivo, we studied mouse knockouts (KOs) of the Ormdl genes. We found that Ormdl1 and Ormdl3 function redundantly to suppress the levels of bioactive sphingolipid metabolites during myelination of the sciatic nerve. Without proper ORMDL-mediated regulation of sphingolipid synthesis, severe dysmyelination results. Our data indicate that the Ormdls function to restrain sphingolipid metabolism in order to limit levels of dangerous metabolic intermediates that can interfere with essential physiological processes such as myelination.


Assuntos
Proteínas de Membrana/genética , Bainha de Mielina/genética , Esfingolipídeos/genética , Animais , Ceramidas/genética , Células HeLa , Humanos , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/genética , Transdução de Sinais/genética , Esfingolipídeos/biossíntese
19.
J Tissue Eng Regen Med ; 10(2): E84-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23606586

RESUMO

Improvements in ex vivo generation of enucleated red blood cells are being sought for erythroid biology research, toward the ultimate goal of erythrocyte engineering for clinical use. Based upon the high levels of iron-saturated transferrin in plasma serum, it was hypothesized that terminal differentiation in serum-free media may be highly dependent on the concentration of iron. Here adult human CD34(+) cells were cultured in a serum-free medium containing dosed levels of iron-saturated transferrin (holo-Tf, 0.1-1.0 mg/ml). Iron in the culture medium was reduced, but not depleted, with erythroblast differentiation into haemoglobinized cells. At the lowest holo-Tf dose (0.1 mg/ml), terminal differentiation was significantly reduced and the majority of the cells underwent apoptotic death. Cell survival, differentiation and enucleation were enhanced as the holo-Tf dose increased. These data suggest that adequate holo-Tf dosing is critical for terminal differentiation and enucleation of human erythroblasts generated ex vivo in serum-free culture conditions. Published 2013. This article is a US Government work and is in the public domain in the USA.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Eritroblastos/citologia , Ferro/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro , Eritroblastos/efeitos dos fármacos , Humanos , Transferrina/metabolismo
20.
PLoS One ; 11(11): e0166928, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861570

RESUMO

Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with beta-hemoglobin disorders. Previous studies showed that let-7 microRNAs (miRNAs) are highly regulated in erythroid cells during the fetal-to-adult developmental transition, and that targeting let-7 mediated the up-regulation of HbF to greater than 30% of the total globin levels in human adult cultured erythroblasts. HMGA2 is a member of the high-mobility group A family of proteins and a validated target of the let-7 family of miRNAs. Here we investigate whether expression of HMGA2 directly regulates fetal hemoglobin in adult erythroblasts. Let-7 resistant HMGA2 expression was studied after lentiviral transduction of CD34(+) cells. The transgene was regulated by the erythroid-specific gene promoter region of the human SPTA1 gene (HMGA2-OE). HMGA2-OE caused significant increases in gamma-globin mRNA expression and HbF to around 16% of the total hemoglobin levels compared to matched control transductions. Interestingly, no significant changes in KLF1, SOX6, GATA1, ZBTB7A and BCL11A mRNA levels were observed. Overall, our data suggest that expression of HMGA2, a downstream target of let-7 miRNAs, causes moderately increased gamma-globin gene and protein expression in adult human erythroblasts.


Assuntos
Eritroblastos/metabolismo , Hemoglobina Fetal/genética , Regulação da Expressão Gênica , Proteína HMGA2/metabolismo , Adulto , Diferenciação Celular/genética , Células Cultivadas , Eritroblastos/citologia , Eritropoese/genética , Hemoglobina Fetal/metabolismo , Expressão Gênica , Proteína HMGA2/genética , Humanos , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA