Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 24(41): 415602, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24060685

RESUMO

Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The nanocrystal/furfuryl alcohol dispersions are suitable for the fabrication of thin films by chemical deposition techniques, including spin-coating, printing or a spraying process. To demonstrate the application of this technique to device fabrication, a multilayer capacitor with capacitance of 0.83 nF mm(-2) at 1 MHz is presented.

2.
Nat Nanotechnol ; 17(4): 347-360, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332293

RESUMO

Achieving sustainable agricultural productivity and global food security are two of the biggest challenges of the new millennium. Addressing these challenges requires innovative technologies that can uplift global food production, while minimizing collateral environmental damage and preserving the resilience of agroecosystems against a rapidly changing climate. Nanomaterials with the ability to encapsulate and deliver pesticidal active ingredients (AIs) in a responsive (for example, controlled, targeted and synchronized) manner offer new opportunities to increase pesticidal efficacy and efficiency when compared with conventional pesticides. Here, we provide a comprehensive analysis of the key properties of nanopesticides in controlling agricultural pests for crop enhancement compared with their non-nanoscale analogues. Our analysis shows that when compared with non-nanoscale pesticides, the overall efficacy of nanopesticides against target organisms is 31.5% higher, including an 18.9% increased efficacy in field trials. Notably, the toxicity of nanopesticides toward non-target organisms is 43.1% lower, highlighting a decrease in collateral damage to the environment. The premature loss of AIs prior to reaching target organisms is reduced by 41.4%, paired with a 22.1% lower leaching potential of AIs in soils. Nanopesticides also render other benefits, including enhanced foliar adhesion, improved crop yield and quality, and a responsive nanoscale delivery platform of AIs to mitigate various pressing biotic and abiotic stresses (for example, heat, drought and salinity). Nonetheless, the uncertainties associated with the adverse effects of some nanopesticides are not well-understood, requiring further investigations. Overall, our findings show that nanopesticides are potentially more efficient, sustainable and resilient with lower adverse environmental impacts than their conventional analogues. These benefits, if harnessed appropriately, can promote higher crop yields and thus contribute towards sustainable agriculture and global food security.


Assuntos
Nanoestruturas , Praguicidas , Agricultura , Segurança Alimentar , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA