Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 43(46): 7812-7821, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37758474

RESUMO

In human and nonhuman primates, deep brain stimulation applied at or near the internal medullary lamina of the thalamus [a region referred to as "central thalamus," (CT)], but not at nearby thalamic sites, elicits major changes in the level of consciousness, even in some minimally conscious brain-damaged patients. The mechanisms behind these effects remain mysterious, as the connections of CT had not been specifically mapped in primates. In marmoset monkeys (Callithrix jacchus) of both sexes, we labeled the axons originating from each of the various CT neuronal populations and analyzed their arborization patterns in the cerebral cortex and striatum. We report that, together, these CT populations innervate an array of high-level frontal, posterior parietal, and cingulate cortical areas. Some populations simultaneously target the frontal, parietal, and cingulate cortices, while others predominantly target the dorsal striatum. Our data indicate that CT stimulation can simultaneously engage a heterogeneous set of projection systems that, together, target the key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.SIGNIFICANCE STATEMENT In human and nonhuman primates, deep brain stimulation at a specific site near the internal medullary lamina of the thalamus ["central thalamus," (CT)] had been shown to restore arousal and awareness in anesthetized animals, as well as in some brain-damaged patients. The mechanisms behind these effects remain mysterious, as CT connections remain poorly defined in primates. In marmoset monkeys, we mapped with sensitive axon-labeling methods the pathways originated from CT. Our data indicate that stimulation applied in CT can simultaneously engage a heterogeneous set of projection systems that, together, target several key nodes of the attention, executive control, and working-memory networks of the brain. Increased functional connectivity in these networks has been previously described as a signature of consciousness.


Assuntos
Lesões Encefálicas , Callithrix , Masculino , Animais , Feminino , Humanos , Tálamo/fisiologia , Córtex Cerebral/fisiologia , Nível de Alerta/fisiologia , Estado de Consciência/fisiologia , Vias Neurais/fisiologia
2.
Front Neuroanat ; 13: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971903

RESUMO

The amygdaloid complex (AC) is a heterogeneous aggregate of nuclei located in the rostromedial region of the temporal lobe. In addition to being partly connected among themselves, the AC nuclei are strongly interconnected with the cerebral cortex, striatum, basal forebrain, hypothalamus and brainstem. Animal and human functional studies have established that the AC is a central hub of the neuronal networks supporting emotional responsivity, particularly its negative/aversive components. Dysfunction of AC circuits in humans has been implicated in anxiety, depression, schizophrenia and bipolar disorder. The small New-World marmoset monkey (Callithrix jacchus) has recently become a key model for neuroscience research. However, the nuclear and fiber tract organization of marmoset AC has not been examined in detail. Thus, the extent to which it can be compared to the AC of Old-World (human and macaque) primates is yet unclear. Here, using Nissl and acetylcholinesterase (AChE) histochemical stains as a reference, we analyzed the cytoarchitecture and nuclear parcellation of the marmoset AC. In addition, given the increasing relevance of tractographic localization for high-resolution in vivo imaging studies in non-human primates, we also identified the myelin fiber tracts present within and around the AC as revealed by the Gallyas method. The present study provides a detailed atlas of marmoset AC. Moreover, it reveals that, despite phylogenetic distance and brain size differences, every nucleus and myelinated axon bundle described in human and macaque studies can be confidently recognized in marmosets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA