Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 23(10): 2057-2065, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29180672

RESUMO

Growing evidence points to a disruption of cortico-thalamo-cortical circuits in schizophrenia (SZ) and bipolar disorder (BD). Clues for a specific involvement of the thalamic reticular nucleus (TRN) come from its unique neuronal characteristics and neural connectivity, allowing it to shape the thalamo-cortical information flow. A direct involvement of the TRN in SZ and BD has not been tested thus far. We used a combination of human postmortem and rodent studies to test the hypothesis that neurons expressing parvalbumin (PV neurons), a main TRN neuronal population, and associated Wisteria floribunda agglutinin-labeled perineuronal nets (WFA/PNNs) are altered in SZ and BD, and that these changes may occur early in the course of the disease as a consequence of oxidative stress. In both disease groups, marked decreases of PV neurons (immunoreactive for PV) and WFA/PNNs were observed in the TRN, with no effects of duration of illness or age at onset. Similarly, in transgenic mice with redox dysregulation, numbers of PV neurons and WFA/PNN+PV neurons were decreased in transgenic compared with wild-type mice; these changes were present at postnatal day (P) 20 for PV neurons and P40 for WFA/PNN+PV neurons, accompanied by alterations of their firing properties. These results show profound abnormalities of PV neurons in the TRN of subjects with SZ and BD, and offer support for the hypothesis that oxidative stress may play a key role in impacting TRN PV neurons at early stages of these disorders. We put forth that these TRN abnormalities may contribute to disruptions of sleep spindles, focused attention and emotion processing in these disorders.


Assuntos
Transtorno Bipolar/fisiopatologia , Esquizofrenia/fisiopatologia , Núcleos Talâmicos/fisiopatologia , Animais , Transtorno Bipolar/metabolismo , Encéfalo/fisiopatologia , Feminino , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Rede Nervosa/metabolismo , Estresse Oxidativo/fisiologia , Parvalbuminas/metabolismo , Parvalbuminas/fisiologia , Esquizofrenia/metabolismo , Tálamo/fisiopatologia
2.
Mol Psychiatry ; 22(12): 1701-1713, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27646262

RESUMO

Stressful life events produce a state of vulnerability to depression in some individuals. The mechanisms that contribute to vulnerability to depression remain poorly understood. A rat model of intense stress (social defeat (SD), first hit) produced vulnerability to depression in 40% of animals. Only vulnerable animals developed a depression-like phenotype after a second stressful hit (chronic mild stress). We found that this vulnerability to depression resulted from a persistent state of oxidative stress, which was reversed by treatment with antioxidants. This persistent state of oxidative stress was due to low brain-derived neurotrophic factor (BDNF) levels, which characterized the vulnerable animals. We found that BDNF constitutively controlled the nuclear translocation of the master redox-sensitive transcription factor Nrf2, which activates antioxidant defenses. Low BDNF levels in vulnerable animals prevented Nrf2 translocation and consequently prevented the activation of detoxifying/antioxidant enzymes, ultimately resulting in the generation of sustained oxidative stress. Activating Nrf2 translocation restored redox homeostasis and reversed vulnerability to depression. This mechanism was confirmed in Nrf2-null mice. The mice displayed high levels of oxidative stress and were inherently vulnerable to depression, but this phenotype was reversed by treatment with antioxidants. Our data reveal a novel role for BDNF in controlling redox homeostasis and provide a mechanistic explanation for post-stress vulnerability to depression while suggesting ways to reverse it. Because numerous enzymatic reactions produce reactive oxygen species that must then be cleared, the finding that BDNF controls endogenous redox homeostasis opens new avenues for investigation.


Assuntos
Transtorno Depressivo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Dominação-Subordinação , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Proteoma , Distribuição Aleatória , Ratos Sprague-Dawley
4.
Mol Psychiatry ; 22(7): 936-943, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28322275

RESUMO

Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress.


Assuntos
Estresse Oxidativo/genética , Parvalbuminas/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Modelos Animais de Doenças , Giro do Cíngulo/metabolismo , Humanos , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos , Oxirredução , Estresse Oxidativo/fisiologia , Esquizofrenia/genética , Esquizofrenia/metabolismo
5.
Mol Psychiatry ; 20(2): 154-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25510509

RESUMO

The in situ hybridization Allen Mouse Brain Atlas was mined for proteases expressed in the somatosensory cerebral cortex. Among the 480 genes coding for protease/peptidases, only four were found enriched in cortical interneurons: Reln coding for reelin; Adamts8 and Adamts15 belonging to the class of metzincin proteases involved in reshaping the perineuronal net (PNN) and Mme encoding for Neprilysin, the enzyme degrading amyloid ß-peptides. The pattern of expression of metalloproteases (MPs) was analyzed by single-cell reverse transcriptase multiplex PCR after patch clamp and was compared with the expression of 10 canonical interneurons markers and 12 additional genes from the Allen Atlas. Clustering of these genes by K-means algorithm displays five distinct clusters. Among these five clusters, two fast-spiking interneuron clusters expressing the calcium-binding protein Pvalb were identified, one co-expressing Pvalb with Sst (PV-Sst) and another co-expressing Pvalb with three metallopeptidases Adamts8, Adamts15 and Mme (PV-MP). By using Wisteria floribunda agglutinin, a specific marker for PNN, PV-MP interneurons were found surrounded by PNN, whereas the ones expressing Sst, PV-Sst, were not.


Assuntos
Proteínas ADAM/metabolismo , Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Neprilisina/metabolismo , Parvalbuminas/metabolismo , Córtex Sensório-Motor/citologia , Proteínas ADAM/genética , Proteínas ADAMTS , Animais , Animais Recém-Nascidos , Análise por Conglomerados , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Neprilisina/genética , Técnicas de Patch-Clamp , Lectinas de Plantas/metabolismo , Receptores de N-Acetilglucosamina/metabolismo , Proteína Reelina
6.
Mol Psychiatry ; 20(7): 827-38, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25155877

RESUMO

Schizophrenia pathophysiology implies both abnormal redox control and dysconnectivity of the prefrontal cortex, partly related to oligodendrocyte and myelin impairments. As oligodendrocytes are highly vulnerable to altered redox state, we investigated the interplay between glutathione and myelin. In control subjects, multimodal brain imaging revealed a positive association between medial prefrontal glutathione levels and both white matter integrity and resting-state functional connectivity along the cingulum bundle. In early psychosis patients, only white matter integrity was correlated with glutathione levels. On the other side, in the prefrontal cortex of peripubertal mice with genetically impaired glutathione synthesis, mature oligodendrocyte numbers, as well as myelin markers, were decreased. At the molecular levels, under glutathione-deficit conditions induced by short hairpin RNA targeting the key glutathione synthesis enzyme, oligodendrocyte progenitors showed a decreased proliferation mediated by an upregulation of Fyn kinase activity, reversed by either the antioxidant N-acetylcysteine or Fyn kinase inhibitors. In addition, oligodendrocyte maturation was impaired. Interestingly, the regulation of Fyn mRNA and protein expression was also impaired in fibroblasts of patients deficient in glutathione synthesis. Thus, glutathione and redox regulation have a critical role in myelination processes and white matter maturation in the prefrontal cortex of rodent and human, a mechanism potentially disrupted in schizophrenia.


Assuntos
Glutationa/deficiência , Oligodendroglia/patologia , Oligodendroglia/fisiologia , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Adulto , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Humanos , Masculino , Camundongos Knockout , Bainha de Mielina/patologia , Bainha de Mielina/fisiologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos Wistar , Esquizofrenia/tratamento farmacológico , Substância Branca/patologia , Substância Branca/fisiopatologia , Adulto Jovem
7.
Schizophr Res ; 176(1): 41-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-25000913

RESUMO

Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease.


Assuntos
Inflamação , Interneurônios , Oligodendroglia , Oxirredução , Parvalbuminas , Receptores de N-Metil-D-Aspartato , Esquizofrenia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Interneurônios/imunologia , Interneurônios/metabolismo , Oligodendroglia/imunologia , Oligodendroglia/metabolismo , Parvalbuminas/imunologia , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/imunologia , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/imunologia , Esquizofrenia/metabolismo
8.
Vision Res ; 42(1): 89-98, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11804634

RESUMO

We examined three-dimensional binocular positions in the alert and sleepy monkeys. In contrast to the tightly yoked eye movements observed in alertness, the eyes were usually converged, vertically misaligned and had a much larger torsional variability during light sleep. While in alertness eye position vectors were confined to fronto-parallel planes, the corresponding planes were rotated temporally (e.g. leftward for the left eye) in light sleep. There was no correlation between temporal rotation of the eye position planes and horizontal vergence. All these observations can be explained by randomly innervated extraocular muscles that are rotating the two eyes about anatomically determined axes.


Assuntos
Movimentos Oculares/fisiologia , Sono/fisiologia , Análise de Variância , Animais , Cinestesia/fisiologia , Macaca mulatta , Visão Binocular/fisiologia
9.
Vision Res ; 41(4): 495-505, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11166052

RESUMO

We examined three-dimensional eye positions in alertness and light sleep when monkeys were placed in different roll and pitch body orientations. In alertness, eye positions were confined to a fronto-parallel (Listing's) plane, torsional variability was small and static roll or pitch induced a torsional shift or vertical rotation of these planes. In light sleep, the planes rotated temporally by about 10 degrees, torsional variability increased by a factor of two and the static otolith-ocular reflexes were reduced by about 70%. These data support the importance of a neural control of the thickness and orientation of Listing's plane, and suggest that part of the vestibular input underlying otolith-ocular reflexes depend on polysynaptic neural processing.


Assuntos
Movimentos Oculares/fisiologia , Orientação/fisiologia , Sono/fisiologia , Animais , Modelos Lineares , Macaca mulatta , Reflexo/fisiologia
10.
J Neurophysiol ; 86(2): 935-49, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11495962

RESUMO

Saccade-related burst neurons in the paramedian pontine reticular formation (PPRF) of the head-restrained monkey provide a phasic velocity signal to extraocular motoneurons for the generation of rapid eye movements. In the superior colliculus (SC), which directly projects to the PPRF, the motor command for conjugate saccades with the head restrained in a roll position is represented in a reference frame in between oculocentric and space-fixed coordinates with a clear bias toward gravity. Here we studied the preferred direction of premotor burst neurons in the PPRF during static head roll to characterize their frame of reference with respect to head and eye position. In 59 neurons (short-lead, burst-tonic, and long-lead burst neurons), we found that the preferred direction of eye displacement of these neurons changed, relative to head-fixed landmarks, in the horizontal-vertical plane during static head roll. For the short-lead burst neurons and the burst-tonic group, the change was about one-fourth of the amount of ocular counterroll (OCR) and significantly different from a head-centered representation. In the long-lead burst neurons, the rotation of the preferred direction showed a larger trend of about one-half of OCR. During microelectrical stimulation of the PPRF (9 sites in 2 monkeys), the elicited eye movements rotated with about one-half the amount of OCR. In a simple pulley model of the oculomotor plant, the noncraniocentric reference frame of the PPRF output neurons could be reproduced for recently measured pulley positions, if the pulleys were assumed to rotate as a function of OCR with a gain of 0.5. We conclude that the saccadic displacement signal is transformed from a representation in the SC with a clear bias to gravity to a representation in the PPRF that is closely craniocentric, but rotates with OCR, consistent with current concepts of the oculomotor plant.


Assuntos
Movimentos da Cabeça/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Ponte/fisiologia , Movimentos Sacádicos/fisiologia , Animais , Estimulação Elétrica , Eletrofisiologia , Modelos Lineares , Macaca mulatta , Periodicidade , Ponte/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA