Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hepatol ; 74(3): 522-534, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32987030

RESUMO

BACKGROUND & AIMS: Current antiviral therapies help keep HBV under control, but they are not curative, as they are unable to eliminate the intracellular viral replication intermediate termed covalently closed circular DNA (cccDNA). Therefore, there remains an urgent need to develop strategies to cure CHB. Functional silencing of cccDNA is a crucial curative strategy that may be achieved by targeting the viral protein HBx. METHODS: We screened 2,000 small-molecule compounds for their ability to inhibit HiBiT-tagged HBx (HiBiT-HBx) expression by using a HiBiT lytic detection system. The antiviral activity of a candidate compound and underlying mechanism of its effect on cccDNA transcription were evaluated in HBV-infected cells and a humanised liver mouse model. RESULTS: Dicoumarol, an inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1), significantly reduced HBx expression. Moreover, dicoumarol showed potent antiviral activity against HBV RNAs, HBV DNA, HBsAg and HBc protein in HBV-infected cells and a humanised liver mouse model. Mechanistic studies demonstrated that endogenous NQO1 binds to and protects HBx protein from 20S proteasome-mediated degradation. NQO1 knockdown or dicoumarol treatment significantly reduced the recruitment of HBx to cccDNA and inhibited the transcriptional activity of cccDNA, which was associated with the establishment of a repressive chromatin state. The absence of HBx markedly blocked the antiviral effect induced by NQO1 knockdown or dicoumarol treatment in HBV-infected cells. CONCLUSIONS: Herein, we report on a novel small molecule that targets HBx to combat chronic HBV infection; we also reveal that NQO1 has a role in HBV replication through the regulation of HBx protein stability. LAY SUMMARY: Current antiviral therapies for hepatitis B are not curative because of their inability to eliminate covalently closed circular DNA (cccDNA), which persists in the nuclei of infected cells. HBV X (HBx) protein has an important role in regulating cccDNA transcription. Thus, targeting HBx to silence cccDNA transcription could be an important curative strategy. We identified that the small molecule dicoumarol could block cccDNA transcription by promoting HBx degradation; this is a promising therapeutic strategy for the treatment of chronic hepatitis B.


Assuntos
Antivirais/administração & dosagem , DNA Circular/metabolismo , Dicumarol/administração & dosagem , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/metabolismo , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteólise/efeitos dos fármacos , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , DNA Circular/isolamento & purificação , Modelos Animais de Doenças , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/virologia , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NAD(P)H Desidrogenase (Quinona)/genética , Transfecção , Resultado do Tratamento , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
2.
Clin Sci (Lond) ; 135(12): 1505-1522, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34128977

RESUMO

Chronic hepatitis B virus (HBV) infection is a significant public health burden worldwide. HBV covalently closed circular DNA (cccDNA) organized as a minichromosome in nucleus is responsible for viral persistence and is the key obstacle for a cure of chronic hepatitis B (CHB). Recent studies suggest cccDNA transcription is epigenetically regulated by histone modifications, especially histone acetylation and methylation. In the present study, we identified transcriptionally active histone succinylation (H3K122succ) as a new histone modification on cccDNA minichromosome by using cccDNA ChIP-Seq approach. Silent mating type information regulation 2 homolog 7 (SIRT7), as an NAD+-dependent histone desuccinylase, could bind to cccDNA through interaction with HBV core protein where it catalyzed histone 3 lysine 122 (H3K122) desuccinylation. Moreover, SIRT7 acts cooperatively with histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1) and SET domain containing 2 (SETD2) to induce silencing of HBV transcription through modulation of chromatin structure. Our data improved the understanding of histone modifications of the cccDNA minichromosome, thus transcriptional silencing of cccDNA may represent a novel antiviral strategy for the prevention or treatment of HBV infection.


Assuntos
Catálise , DNA Circular/metabolismo , Histona Metiltransferases/genética , Histonas/metabolismo , Sirtuínas/metabolismo , DNA Viral/genética , Hepatite B/prevenção & controle , Hepatite B/terapia , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/prevenção & controle , Humanos , Sirtuínas/genética , Transcrição Gênica/genética , Replicação Viral/genética
3.
J Infect Dis ; 222(2): 189-193, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32382737

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel ß-coronavirus, causes severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named coronavirus disease 2019 (COVID-19). To date, real-time reverse-transcription polymerase chain reaction (RT-PCR) is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. METHODS: In this study, we developed a peptide-based luminescent immunoassay that detected immunoglobulin (Ig)G and IgM. The assay cutoff value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. RESULTS: To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. CONCLUSIONS: Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Técnicas Imunoenzimáticas/métodos , Pneumonia Viral/diagnóstico , Testes Sorológicos/métodos , Adulto , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Medições Luminescentes , Masculino , Pessoa de Meia-Idade , Pandemias , Peptídeos/imunologia , Pneumonia Viral/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Sensibilidade e Especificidade , Proteínas Virais/imunologia
4.
Hepatology ; 69(5): 1885-1902, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30614547

RESUMO

Hepatitis B virus (HBV) infection is a common infectious disease, in which nuclear covalently closed circular DNA (cccDNA) plays a key role in viral persistence, viral reactivation after treatment withdrawal, and drug resistance. A recent genome-wide association study has identified that the ubiquitin conjugating enzyme E2 L3 (UBE2L3) gene is associated with increased susceptibility to chronic HBV (CHB) infection in adults. However, the association between UBE2L3 and children with CHB and the underlying mechanism remain unclear. In this study, we performed two-stage case-control studies including adults and independent children in the Chinese Han population. The rs59391722 allele in the promoter of the UBE2L3 gene was significantly associated with HBV infection in both adults and children, and it increased the promoter activity of UBE2L3. Serum UBE2L3 protein levels were positively correlated with HBV viral load and hepatitis B e antigen (HBeAg) levels in children with CHB. In an HBV infection cell model, UBE2L3 knockdown significantly reduced total HBV RNAs, 3.5-kb RNA, as well as cccDNA in HBV-infected HepG2-Na+ /taurocholate cotransporting polypeptide cells and human primary hepatocytes. A mechanistic study found that UBE2L3 maintained cccDNA stability by inducing proteasome-dependent degradation of apolipoprotein B mRNA editing enzyme catalytic subunit 3A, which is responsible for the degradation of HBV cccDNA. Moreover, interferon-α (IFN-α) treatment markedly decreased UBE2L3 expression, while UBE2L3 silencing reinforced the antiviral activity of IFN-α on HBV RNAs, cccDNA, and DNA. rs59391722 in UBE2L3 was correlated with HBV DNA suppression and HBeAg loss in response to IFN-α treatment of children with CHB. Conclusion: These findings highlight a host gene, UBE2L3, contributing to the susceptibility to persistent HBV infection; UBE2L3 may be involved in IFN-mediated viral suppression and serve as a potential target in the prevention and treatment of HBV infection.


Assuntos
Citidina Desaminase/metabolismo , Hepatite B Crônica/genética , Enzimas de Conjugação de Ubiquitina/genética , Desaminases APOBEC , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , DNA Circular , Predisposição Genética para Doença , Células Hep G2 , Hepatite B Crônica/tratamento farmacológico , Humanos , Lactente , Interferon-alfa/uso terapêutico , Polimorfismo de Nucleotídeo Único , Enzimas de Conjugação de Ubiquitina/metabolismo , Replicação Viral
5.
Hepatology ; 68(4): 1260-1276, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29624717

RESUMO

Hepatitis B virus (HBV) infection remains a major health problem worldwide. Maintenance of the covalently closed circular DNA (cccDNA), which serves as a template for HBV RNA transcription, is responsible for the failure of eradicating chronic HBV during current antiviral therapy. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications. In this study, we identified silent mating type information regulation 2 homolog 3 (SIRT3) as a host factor restricting HBV transcription and replication by screening seven members of the sirtuin family, which is the class III histone deacetylase. Ectopic SIRT3 expression significantly reduced total HBV RNAs, 3.5-kb RNA, as well as replicative intermediate DNA in HBV-infected HepG2-Na+ /taurocholate cotransporting polypeptide cells and primary human hepatocytes. In contrast, gene silencing of SIRT3 promoted HBV transcription and replication. A mechanistic study found that nuclear SIRT3 was recruited to the HBV cccDNA, where it deacetylated histone 3 lysine 9. Importantly, occupancy of SIRT3 on cccDNA could increase the recruitment of histone methyltransferase suppressor of variegation 3-9 homolog 1 to cccDNA and decrease recruitment of SET domain containing 1A, leading to a marked increase of trimethyl-histone H3 (Lys9) and a decrease of trimethyl-histone H3 (Lys4) on cccDNA. Moreover, SIRT3-mediated HBV cccDNA transcriptional repression involved decreased binding of host RNA polymerase II and transcription factor Yin Yang 1 to cccDNA. Finally, hepatitis B viral X protein could relieve SIRT3-mediated cccDNA transcriptional repression by inhibiting both SIRT3 expression and its recruitment to cccDNA. CONCLUSION: SIRT3 is a host factor epigenetically restricting HBV cccDNA transcription by acting cooperatively with histone methyltransferase; these data provide a rationale for the use of SIRT3 activators in the prevention or treatment of HBV infection. (Hepatology 2018).


Assuntos
DNA Viral/genética , Epigênese Genética/genética , Hepatite B/genética , Domínios PR-SET/genética , Sirtuína 3/genética , Replicação Viral/genética , DNA Complementar/genética , Hepatite B/fisiopatologia , Vírus da Hepatite B/genética , Histona Metiltransferases/metabolismo , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-30224531

RESUMO

The capsid of the hepatitis B virus is an attractive antiviral target for developing therapies against chronic hepatitis B infection. Currently available core protein allosteric modulators (CpAMs) mainly affect one of the two major types of protein-protein interactions involved in the process of capsid assembly, namely, the interaction between the core dimers. Compounds targeting the interaction between two core monomers have not been rigorously screened due to the lack of screening models. We report here a cell-based assay in which the formation of core dimers is indicated by split luciferase complementation (SLC). Making use of this model, 2 compounds, Arbidol (umifenovir) and 20-deoxyingenol, were identified from a library containing 672 compounds as core dimerization regulators. Arbidol and 20-deoxyingenol inhibit the hepatitis B virus (HBV) DNA replication in vitro by decreasing and increasing the formation of core dimer and capsid, respectively. Our results provided a proof of concept for the cell model to be used to screen new agents targeting the step of core dimer and capsid formation.


Assuntos
Antivirais/farmacologia , Diterpenos/farmacologia , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/efeitos dos fármacos , Indóis/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/biossíntese , DNA Viral/genética , Genes Reporter , Células HEK293 , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Ensaios de Triagem em Larga Escala , Humanos , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
7.
Biochem Biophys Res Commun ; 496(3): 904-910, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29366781

RESUMO

Sirtuin 2 (SIRT2) is a class III histone deacetylase that has been implicated to promote HCC development. However, the functional role of SIRT2 in HBV is still unclear. In this study, we found that HBV could upregulate SIRT2 expression. Additionally, HBx could activate SIRT2 promoter to upregulate the mRNA and protein level of SIRT2. Furthermore, we found that SIRT2 could facilitate HBV transcription and replication. Finally, we demonstrated that upregulation of SIRT2 by HBx promoted hepatocarcinogenesis. In summary, our findings revealed a novel function of SIRT2 in HBV and HBV-mediated HCC. First, SIRT2 could promote HBV replication. And then HBx-elevated SIRT2 could enhance the transformation of HBV-mediated HCC. Those findings highlight the potential role of SIRT2 in HBV and HBV-mediated HCC by interaction with HBx.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Sirtuína 2/metabolismo , Replicação Viral/fisiologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Hepatite B/metabolismo , Hepatite B/virologia , Humanos , Neoplasias Hepáticas/patologia
8.
J Virol ; 88(5): 2442-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335313

RESUMO

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver cirrhosis and hepatocellular carcinoma. Nevertheless, the molecular mechanism of HBV replication remains elusive. SIRT1 is a class III histone deacetylase that is a structure component of the HBV cccDNA minichromosome. In this study, we found by using microarray-based gene expression profiling analysis that SIRT1 was upregulated in HBV-expressing cells. Gene silencing of SIRT1 significantly inhibited HBV DNA replicative intermediates, 3.5-kb mRNA, and core protein levels. In contrast, the overexpression of SIRT1 augmented HBV replication. Furthermore, SIRT1 enhanced the activity of HBV core promoter by targeting transcription factor AP-1. The c-Jun subunit of AP-1 was bound to the HBV core promoter region, as demonstrated by using a chromatin immunoprecipitation assay. Mutation of AP-1 binding site or knockdown of AP-1 abolished the effect of SIRT1 on HBV replication. Finally, SIRT1 inhibitor sirtinol also suppressed the HBV DNA replicative intermediate, as well as 3.5-kb mRNA. Our study identified a novel host factor, SIRT1, which may facilitate HBV replication in hepatocytes. These data suggest a rationale for the use of SIRT1 inhibitor in the treatment of HBV infection.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite B/fisiologia , Sirtuína 1/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Replicação Viral , Linhagem Celular , Expressão Gênica , Inativação Gênica , Genes Virais , Inibidores de Histona Desacetilases/farmacologia , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Replicação Viral/efeitos dos fármacos
9.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 35(1): 13-8, 2013 Feb.
Artigo em Zh | MEDLINE | ID: mdl-23469784

RESUMO

OBJECTIVE: To establish a stable cell line that can replicate hepatitis B virus (HBV) DNA carrying the reverse transcriptase sequence derived from a clinical isolate. METHODS: Nested PCR was used to amplify the HBV DNA fragment from the serum. The fragment was cloned into a plasmid that can support HBV replication in vitro by fragment substitution reaction (FSR), followed by the cloning of the neomycin expressing fragment downstream from HBV DNA. G418 selection was conducted after the transfection of HepG2 cells with the recombinant DNA. Real-time PCR and enzyme linked immunosorbent assay (ELISA) were used to screen stable cell lines that can replicate HBV DNA, and the replication of HBV DNA by the cell line was confirmed by using Southern blot analysis. RESULTS: Fragment nt55-1654 amplified from the serum DNA was substituted to the plasmid pLL, generating the plasmid p11. The neomycin fragment was cloned into p11, leading to the plasmid p11-neo, and p11-neo was confirmed to be HBV-replication-competent. A stable cell line named 3-10 that can replicate HBV DNA was obtained. CONCLUSIONS: A stable cell line was established that can replicate HBV DNA carrying the reverse transcriptase sequence derived from a clinical isolate. Real-time PCR plus ELISA may help to rapidly screen out stable cell lines replicating HBV DNA.


Assuntos
Linhagem Celular , Replicação do DNA , DNA Viral/biossíntese , Vírus da Hepatite B/genética , Hepatócitos/citologia , Clonagem Molecular , Vetores Genéticos , Células Hep G2 , Hepatócitos/virologia , Humanos , Plasmídeos , DNA Polimerase Dirigida por RNA/genética , Replicação Viral/genética
10.
Zhonghua Gan Zang Bing Za Zhi ; 21(8): 565-9, 2013 Aug.
Artigo em Zh | MEDLINE | ID: mdl-24119733

RESUMO

OBJECTIVE: To investigate the biological role of auto-induced expression of hepatitis C virus (HCV) core protein (protein C) using a recombinant protein in an in vitro cell-based system. METHODS: The PCR-amplified full-length HCV protein C gene (573 bp) was inserted into the pET28a prokaryotic expression vector. The recombinant plasmid was transformed into BL21(DE3)pLysS E. coli to achieve high-concentration expression of the recombinant C protein by auto-induction. The recombinant protein C was purified by Ni-NTA affinity chromatography, and tested in a protein binding assay for its ability to bind the HCV NS3 protein. RESULTS: The transformed E. coli produced a large amount of recombinant protein C, as detected in the sonicated supernatant of the bacteria culture. The antigenic reactivity of the recombinant protein C was confirmed by western blotting. However, the recombinant protein C could not be purified by Ni-NTA affinity chromatography, but co-precipitated with the HCV NS3 protein. CONCLUSION: Soluble recombinant protein C was successfully expressed by auto-induction, and shown to interact with the HCV NS3 protein, which provides a novel insight into the putative biological activity of this factor in HCV-related molecular processes. Future studies of this recombinant HCV protein C's crystal structure and antigenicity may provide further clues to its biological function(s) and potential for clinical applications.


Assuntos
Proteínas Recombinantes/genética , Proteínas do Core Viral/genética , Escherichia coli/metabolismo , Vetores Genéticos , Hepacivirus , Proteínas Recombinantes/metabolismo , Proteínas do Core Viral/biossíntese , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
11.
J Med Virol ; 84(1): 34-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22052677

RESUMO

Phenotypic assays of hepatitis B virus (HBV) play an important role in research related to the problem of drug resistance that emerges during long-term nucleot(s)ide therapy in patients with chronic hepatitis B. Most of the phenotypic assay systems that are available currently rely on the transfection of recombinant replication-competent HBV DNA into hepatoma cell lines. Cloning clinical HBV isolates using conventional digestion-and-ligation techniques to generate replication-competent recombinants can be very difficult because of the sequence heterogeneity and unique structure of the HBV genome. In this study, a new strategy for constructing an HBV 1.1× recombinant was developed. The core of this strategy is the "fragment substitution reaction" (FSR). FSR allows PCR fragments to be cloned without digestion or ligation, providing a new tool for cloning fragments or genomes amplified from serum HBV DNA, and therefore making the assay of HBV phenotypes more convenient. Using this strategy, a phenotypic assay was performed on an HBV strain carrying an rtS246T variant isolated from a patient with chronic hepatitis B that was only responsive partially to entecavir therapy. The results indicated that this strain is sensitive to entecavir in vitro.


Assuntos
Antivirais/uso terapêutico , Clonagem Molecular/métodos , Farmacorresistência Viral , Vírus da Hepatite B/efeitos dos fármacos , Mutação de Sentido Incorreto , DNA Polimerase Dirigida por RNA/metabolismo , Virologia/métodos , Adulto , Sequência de Bases , DNA Viral/química , DNA Viral/genética , Guanina/análogos & derivados , Guanina/uso terapêutico , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Humanos , Masculino , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fenótipo , DNA Polimerase Dirigida por RNA/genética , Recombinação Genética , Análise de Sequência de DNA
12.
Z Naturforsch C J Biosci ; 67(5-6): 327-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22888539

RESUMO

Translation elongation factor 1A (eEF1A) is a factor critically involved in the process of protein synthesis. The activity of eEF1A has been shown by several studies to be regulated by post-translational modifications such as phosphorylation and dephosphorylation. However, until now less research has focused on other post-translational modifications of eEF1A, especially acetylation. In this report, we provide new evidence for the existence of eEF1A acetylation in PLC5 cells by immunoprecipitation and Western blotting. Using the histone deacetylase (HDAC) inhibitor trichostatin A (TSA), we found that the deacetylation of eEF1A is mainly attributable to classes I and II HDAC rather than class III HDAC, and, furthermore, that the antitumour agent etoposide phosphate (VP 16) enhances the acetylation of eEF1A in a synergistic way with TSA. Our data suggest the possibility that the increased acetylation of eEF1A could be a new mechanism for the antitumour effect of etoposide.


Assuntos
Antineoplásicos/farmacologia , Etoposídeo/análogos & derivados , Compostos Organofosforados/farmacologia , Fator 1 de Elongação de Peptídeos/metabolismo , Acetilação , Linhagem Celular , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Etoposídeo/farmacologia , Humanos
13.
J Biotechnol ; 357: 100-107, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35963591

RESUMO

Caspases are a family of evolutionary conserved cysteine proteases that play key roles in programmed cell death and inflammation. Among the methods for the detection of caspase activity, biosensors based on luciferases have advantages in genetical encoding and convenience in assay. In this study, we constructed a new set of caspase biosensors based on NanoLuc luciferase. This kind of sensors, named NanoLock, work in dark-to-bright model, with the help of a NanoLuc quencher peptide (HiBiT-R/D) mutated from HiBiT. Optimized NanoLock responded to proteases with high signal to noise ratio (S/N), 1233-fold activation by tobacco etch virus protease in HEK293 cells and > 500-fold induction to caspase 3 in vitro. We constructed NanoLocks for the detection of caspase 1, 3, 6, 7, 8, 9, and 10, and assays in HEK293 cells demonstrated that these sensors performed better than commercial kits in the aspect of S/N and convenience. We further established a cell line stably expressing NanoLock-casp 6 and provided a proof-of-concept for the usage of this cell line in the high throughput screening of caspase 6 modulator.


Assuntos
Apoptose , Caspases , Caspase 3 , Caspases/genética , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo
14.
Biosens Bioelectron ; 209: 114226, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413624

RESUMO

Protein sensors based on allosteric enzymes responding to target binding with rapid changes in enzymatic activity are potential tools for homogeneous assays. However, a high signal-to-noise ratio (S/N) is difficult to achieve in their construction. A high S/N is critical to discriminate signals from the background, a phenomenon that might largely vary among serum samples from different individuals. Herein, based on the modularized luciferase NanoLuc, we designed a novel biosensor called NanoSwitch. This sensor allows direct detection of antibodies in 1 µl serum in 45 min without washing steps. In the detection of Flag and HA antibodies, NanoSwitches respond to antibodies with S/N ratios of 33-fold and 42-fold, respectively. Further, we constructed a NanoSwitch for detecting SARS-CoV-2-specific antibodies, which showed over 200-fold S/N in serum samples. High S/N was achieved by a new working model, combining the turn-off of the sensor with human serum albumin and turn-on with a specific antibody. Also, we constructed NanoSwitches for detecting antibodies against the core protein of hepatitis C virus (HCV) and gp41 of the human immunodeficiency virus (HIV). Interestingly, these sensors demonstrated a high S/N and good performance in the assays of clinical samples; this was partly attributed to the combination of off-and-on models. In summary, we provide a novel type of protein sensor and a working model that potentially guides new sensor design with better performance.


Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Luciferases , SARS-CoV-2
15.
Zhonghua Gan Zang Bing Za Zhi ; 19(9): 692-5, 2011 Sep.
Artigo em Zh | MEDLINE | ID: mdl-22152386

RESUMO

OBJECTIVE: To search for the optimal approach for hepatocyte-directed differentiation of hepatic progenitor cells and investigate the molecular mechanism of the hepatic differentiation. METHODS: Hepatic progenitor cells were infected with recombinant adenovirus which containing human LIF, BMP2 or BMP9 gene. The maturation and differentiation of progenitor cells were examined by PAS staining and ICG uptake methods at 4, 7 and 10 days post infection. The production of Albumin (Alb) was measured by luciferase activity at day 4, 7, 10 and 14. RESULTS: PAS staining assay revealed that BMP2 and BMP9 enhanced glycogen storage in hepatic progenitor cells most obviously at day 7. The percentages of positive cells were 30% and 45% respectively at 7 days post-infection. Meanwhile, 40% and 30% cells were positive by ICG uptake assay after BMP2 and BMP9 induction. Luciferase activity indicated that BMP9 induced ALB-Luc activity most significantly at day 7. However, less inductive activity was found in LIF-treated group. CONCLUSION: These results indicated tuat hepatic progenitor cells were differentiated into hepatocyte-like cells by BMPs and LIF induction.


Assuntos
Proteínas Morfogenéticas Ósseas/farmacologia , Hepatócitos/citologia , Fator Inibidor de Leucemia/farmacologia , Células-Tronco/citologia , Adenoviridae , Diferenciação Celular , Células Cultivadas , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Células-Tronco/metabolismo , Células-Tronco/virologia
16.
Cell Discov ; 7(1): 18, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767156

RESUMO

It is important to evaluate the durability of the protective immune response elicited by primary infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we systematically evaluated the SARS-CoV-2-specific memory B cell and T cell responses in healthy controls and individuals recovered from asymptomatic or symptomatic infection approximately 6 months prior. Comparatively low frequencies of memory B cells specific for the receptor-binding domain (RBD) of spike glycoprotein (S) persisted in the peripheral blood of individuals who recovered from infection (median 0.62%, interquartile range 0.48-0.69). The SARS-CoV-2 RBD-specific memory B cell response was detected in 2 of 13 individuals who recovered from asymptomatic infection and 10 of 20 individuals who recovered from symptomatic infection. T cell responses induced by S, membrane (M), and nucleocapsid (N) peptide libraries from SARS-CoV-2 were observed in individuals recovered from coronavirus disease 2019 (COVID-19), and cross-reactive T cell responses to SARS-CoV-2 were also detected in healthy controls.

17.
Genes Dis ; 7(4): 535-541, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32363222

RESUMO

In December 2019, the corona virus disease 2019 (COVID-19) caused by novel coronavirus (SARS-CoV-2) emerged in Wuhan, China and rapidly spread worldwide. Few information on clinical features and immunological profile of COVID-19 in paediatrics. The clinical features and treatment outcomes of twelve paediatric patients confirmed as COVID-19 were analyzed. The immunological features of children patients was investigated and compared with twenty adult patients. The median age was 14.5-years (range from 0.64 to 17), and six of the patients were male. The average incubation period was 8 days. Clinically, cough (9/12, 75%) and fever (7/12, 58.3%) were the most common symptoms. Four patients (33.3%) had diarrhea during the disease. As to the immune profile, children had higher amount of total T cell, CD8+ T cell and B cell but lower CRP levels than adults (P < 0.05). Ground-glass opacity (GGO) and local patchy shadowing were the typical radiological findings on chest CT scan. All patients received antiviral and symptomatic treatment and the symptom relieved in 3-4 days after admitted to hospital. The paediatric patients showed mild symptom but with longer incubation period. Children infected with SARS-CoV-2 had different immune profile with higher T cell amount and low inflammatory factors level, which might ascribed to the mild clinical symptom. We advise that nucleic acid test or examination of serum IgM/IgG antibodies against SARS-CoV-2 should be taken for children with exposure history regardless of clinical symptom.

18.
Nat Med ; 26(6): 845-848, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32350462

RESUMO

We report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos/efeitos dos fármacos , Betacoronavirus/patogenicidade , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Adulto , Idoso , Formação de Anticorpos/imunologia , Antivirais/uso terapêutico , Betacoronavirus/genética , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2
19.
EBioMedicine ; 49: 232-246, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31680002

RESUMO

BACKGROUND: Hepatitis B surface antigen (HBsAg) is one of the important clinical indexes for hepatitis B virus (HBV) infection diagnosis and sustained seroconversion of HBsAg is an indicator for functional cure. However, the level of HBsAg could not be reduced by interferons and nucleoside analogs effectively. Therefore, identification of a new drug targeting HBsAg is urgently needed. METHODS: In this study, 6-AN was screened out from 1500 compounds due to its low cytotoxicity and high antiviral activity. The effect of 6-AN on HBV was examined in HepAD38, HepG2-NTCP and PHHs cells. In addition, the antivirus effect of 6-AN was also identified in mouse model. FINDINGS: 6-AN treatment resulted in a significant decrease of HBsAg and other viral markers both in vitro and in vivo. Furthermore, we found that 6-AN inhibited the activities of HBV SpI, SpII and core promoter by decreasing transcription factor PPARα, subsequently reduced HBV RNAs transcription and HBsAg production. INTERPRETATION: We have identified a novel small molecule to inhibit HBV core DNA, HBV RNAs, HBsAg production, as well as cccDNA to a minor degree both in vitro and in vivo. This study may shed light on the development of a novel class of anti-HBV agent.


Assuntos
6-Aminonicotinamida/farmacologia , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Replicação Viral/efeitos dos fármacos , 6-Aminonicotinamida/química , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos , Viremia/sangue
20.
Cancer Lett ; 451: 156-167, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867140

RESUMO

NAD(P)H: quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme which is associated with poor prognosis in human breast, colon, lung and liver cancers. However, the molecular mechanisms underlying the pro-tumorigenic function of NQO1 remains unclear. This study investigated the function of NQO1 in the context of hepatocellular carcinoma (HCC) development. We found that NQO1 was frequently up-regulated in human liver cancer, and its high expression level was correlated with the tumor stage and low survival rate of HCC patients. Loss-of-function of NQO1 inhibited growth in HCC cells with increased apoptosis in vitro, and suppressed orthotopic tumorigenicity in vivo. Mechanistically, high level of NQO1 in HCC cells enhanced protein stability of X-linked inhibitor of apoptosis protein (XIAP) by increasing its phosphorylation at Ser 87. Reintroduction of wile type XIAP and the phospho-mimic mutants XIAPS87D significantly reversed NQO1 knock-down/out induced growth inhibition and apoptosis. In mouse model with orthotopically implanted hepatocarcinoma, NQO1 suppression and NQO1 inhibitor suppressed tumor growth and induced apoptosis. NQO1 plays an important role in sustaining HCC cell proliferation and may thus act as a potential therapeutic target in HCC treatment.


Assuntos
Apoptose , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Transformada , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NAD(P)H Desidrogenase (Quinona)/genética , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA