RESUMO
Aluminium (Al), gallium (Ga), and indium (In) are metals widely used in diverse applications in industry, which consequently result in a source of environmental contamination. In this study, strain Rhodanobacter sp. B2A1Ga4, highly resistant to Al, Ga, and In, was studied to reveal the main effects of these metals on the strain and the bacterial mechanisms linked to the ability to cope with them. An indium-sensitive mutant obtained by random transposon mutagenesis has the feoA gene interrupted. This gene together with the feoB gene is part of the feo operon which encodes a ferrous uptake system (FeoAB). The mutant strain exhibited higher oxidative stress supported by a high concentration of reactive oxygen species (ROS) and low levels of reduced glutathione (GSH) in the presence of metals. The iron supplementation of the growth medium reverted the growth inhibition of the mutant strain caused by Ga and In, significantly reduced the ROS amounts in mutant cells grown in all conditions, and increased its GSH/total glutathione ratio to values similar to those of the native strain. Moreover, the mutant strain when submitted to In increased the production of siderophores. The genome sequence analysis of strain B2A1Ga4 showed a large number of genes encoding putative proteins involved in iron uptake from the cell surface to the cytoplasm. Understanding the bacteria-metal interactions linked to resistance to high-tech metals is relevant to future application of microorganisms in bioremediation and/or biorecovery processes of these metals. KEY POINTS: ⢠The disruption of FeoAB system compromises the bacterial resistance to Al, Ga, and In. ⢠The iron acquisition in Rhodanobacter sp. B2A1Ga4 controls the oxidative stress. ⢠Genome mining of strain B2A1Ga4 reveals several iron transport related genes.
Assuntos
Gálio , Metais Pesados , Alumínio , Proteínas de Bactérias/genética , Índio , Metais Pesados/toxicidadeRESUMO
Mine waste can be transformed into technosol as an ecological strategy. Despite its importance to soil functions, biological activity is often overlooked. Biopolymers can serve as innovative tools for bioremediation, facilitating chemical reactions and creating networks to encapsulate contaminants. This work aims to assess the use of bioleached and stabilised residues from a tungsten mine for technosol production. The first objective was to evaluate mine tailings for their bioleaching potential by biostimulation or bioaugmentation with strain Diaphorobacter polyhydroxybutyrativorans B2A2W2. The second was to evaluate the effect of Portland cement or biopolymers such as Carboxymethyl Cellulose (CMC) or Xanthan Gum (XG) on the stabilisation of bioleached residues. The impact of biopolymers on residues' characteristics, such as metal leaching, number of cultivable microorganisms, compression strength and ecotoxicity was evaluated using flow systems. Over time, bioleached metallic elements decreased, except for iron (Fe). Biostimulated and stabilised residues exhibited similar trends; both CMC and cement showed low leaching rates and viable microorganisms in the same order (106 CFU × ml-1). However, bioaugmented residue stabilised with XG showed 106 CFU × ml-1 viable microorganisms and increased 2.2-fold Fe leaching than BA_Control. CMC addition to bioaugmented residue reduced 5.9-fold Fe leaching and increased 100-fold viable microorganisms. By utilising both biological and engineering approaches to characterise the technosol, this study contributes to advancing knowledge of technosol production. The residues biostimulated and stabilised with CMC produced a material useful for bio-applications, with low toxicity and metal leaching, useful for bio-applications. XG was the best stabiliser for geotechnical engineering applications, with improved compression strength. In conclusion, the study demonstrates the usefulness of biopolymer treatment for residues and emphasises the importance of selecting the appropriate biopolymer for the intended function of technosols.
Assuntos
Biodegradação Ambiental , Mineração , Polissacarídeos Bacterianos , Biopolímeros/química , Polissacarídeos Bacterianos/química , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/metabolismo , Tungstênio/química , Rhodobacteraceae/metabolismo , Resíduos IndustriaisRESUMO
Indium (In) is a critical metal widely used in electronic equipment, and the supply of this precious metal is a major challenge for sustainable development. The use of microorganisms for the recovery of this critical high-tech element has been considered an excellent eco-friendly strategy. The Rhodanobacter sp. B2A1Ga4 strain, highly resistant to In, was studied in order to disclose the bacterial mechanisms closely linked to the ability to cope with this metal. The mutation of the gene encoding for a DedA protein homolog, YqaA, affected drastically the In resistance and the cellular metabolic activity of strain Rhodanobacter sp. B2A1Ga4 in presence of this metal. This indicates that this protein plays an important role in its In resistance phenotype. The negative impact of In might be related to the high accumulation of the metal into the mutant cells showing In concentration up to approximately 4-fold higher than the native strain. In addition, the expression of the yqaA gene in this mutant reverted the bacterial phenotype with a significant decrease of In accumulation levels into the cells and an increase of In resistance. Membrane potential measurements showed similar values for native and mutant cells, suggesting that there was no loss of proton-motive force in the mutant cells. The results from this study suggest a potential role of this DedA family protein as a membrane transporter involved in the In efflux process. The mutant strain also has the potential to be used as a biotool in bioaccumulation strategies, for the recovery of In in biomining activities.
RESUMO
The use of microorganisms that allows the recovery of critical high-tech elements such as gallium (Ga) and indium (In) has been considered an excellent eco-strategy. In this perspective, it is relevant to understand the strategies of Ga and In resistant strains to cope with these critical metals. This study aimed to explore the effect of these metals on two Ga/In resistant strains and to scrutinize the biological processes behind the oxidative stress in response to exposure to these critical metals. Two strains of Serratia fonticola, A3242 and B2A1Ga1, with high resistance to Ga and In, were submitted to metal stress and their protein profiles showed an overexpressed Superoxide Dismutase (SOD) in presence of In. Results of inhibitor-protein native gel incubations identified the overexpressed enzyme as a Fe-SOD. Both strains exhibited a huge increase of oxidative stress when exposed to indium, visible by an extreme high amount of reactive oxygen species (ROS) production. The toxicity induced by indium triggered biological mechanisms of stress control namely, the decrease in reduced glutathione/total glutathione levels and an increase in the SOD activity. The effect of gallium in cells was not so boisterous, visible only by the decrease of reduced glutathione levels. Analysis of the cellular metabolic viability revealed that each strain was affected differently by the critical metals, which could be related to the distinct metal uptakes. Strain A3242 accumulated more Ga and In in comparison to strain B2A1Ga1, and showed lower metabolic activity. Understanding the biological response of the two metal resistant strains of S. fonticola to stress induced by Ga and In will tackle the current gap of information related with bacteria-critical metals interactions.