Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Health Expect ; 24(5): 1593-1606, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34247435

RESUMO

OBJECTIVE: We conducted a UK-wide survey to identify the top 10 research questions for young people's cancer. We conducted secondary analysis of questions submitted, which were 'out-of-scope' of the original survey aim. We sought to disseminate these questions, to inform practice, policy and the development of potential interventions to support young people with cancer. DESIGN: James Lind Alliance Priority Setting Partnership. PARTICIPANTS: Young people aged 13-24 with a current/previous cancer diagnosis, their families/friends/partners and professionals who work with this population. METHODS: Eight hundred and fifty-five potential research questions were submitted, and 326 were classified as 'out-of-scope'. These questions, along with 49 'free-text' comments, were analysed using thematic analysis. RESULTS: The 375 out-of-scope questions and comments were submitted by: 68 young people, 81 family members/partners/friends and 42 professionals. Ten overarching themes were identified: diagnostic experience; communication; coordination of care; information needs and lack of information; service provision; long-term effects and aftercare support; family support; financial impact; end-of life care; and research methods and current research. CONCLUSIONS: The need to tailor services, information and communication is a striking thread evidenced across the 'out-of-scope' questions. Gaps in information highlight implications for practice in revisiting information needs throughout the cancer trajectory. We must advocate for specialist care for young people and promote the research priorities and these findings to funding bodies, charities, young people and health and social care policymakers, in order to generate an evidence base to inform effective interventions across the cancer trajectory and improve outcomes. PATIENT/PUBLIC CONTRIBUTIONS: Patients and carers were equal stakeholders throughout.


Assuntos
Pesquisa Biomédica , Neoplasias , Adolescente , Cuidadores , Prioridades em Saúde , Humanos , Neoplasias/terapia , Inquéritos e Questionários , Adulto Jovem
2.
Environ Microbiol ; 18(8): 2604-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27198766

RESUMO

Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization.


Assuntos
Alcanos/metabolismo , Deltaproteobacteria/metabolismo , Fumaratos/metabolismo , Methanomicrobiales/metabolismo , Parafina/metabolismo , Biodegradação Ambiental , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Metabolismo Energético/fisiologia , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenômica , Methanomicrobiales/classificação , Methanomicrobiales/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , RNA Ribossômico 16S/genética
3.
Int J Syst Evol Microbiol ; 66(3): 1242-1248, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704417

RESUMO

A mesophilic deltaproteobacterium, designated strain SPRT, was isolated from a methanogenic consortium capable of degrading long-chain paraffins. Cells were motile, vibrio-shaped, and occurred singly, in pairs or in clusters. Strain SPRT did not metabolize hydrocarbons but grew fermentatively on pyruvate and oxaloacetate and autotrophically with H2 and CO2. Thiosulfate served as a terminal electron acceptor, but sulfate or sulfite did not. The organism required at least 10 g NaCl l- 1 and a small amount of yeast extract (0.001%) for growth. Optimal growth was observed between 30 and 37 °C and a pH range from 6.0 to 7.2. The DNA G+C content of SPRT's genome was 52.02 mol%. Based on 16S rRNA gene sequence analysis, strain SPRT was distinct from previously described Deltaproteobacteria, exhibiting the closest affiliation to Desulfarculus baarsii DSM 2075T and Desulfocarbo indianensis SCBMT, with only 91% similarity between their respective 16S gene sequences. In silico genome comparison supported the distinctiveness between strain SPRT and both Desulfocarbo indianensis SCBMT and Desulfarculus baarsii DSM 2075T. Based on physiological differences, as well as phylogenetic and genomic comparisons, we propose to classify SPRT as the type strain ( = DSM 100305T = JCM 30857T) of a novel species of a new genus with the name Dethiosulfatarculus sandiegensis gen. nov., sp. nov.

4.
Microb Cell Fact ; 15: 72, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27142164

RESUMO

BACKGROUND: Among the oligosaccharides that may positively affect the gut microbiota, xylo-oligosaccharides (XOS) and arabinoxylan oligosaccharides (AXOS) possess promising functional properties. Ingestion of XOS has been reported to contribute to anti-oxidant, anti-bacterial, immune-modulatory and anti-diabetic activities. Because of the structural complexity and chemical heterogeneity, complete degradation of xylan-containing plant polymers requires the synergistic activity of several enzymes. Endo-xylanases and ß-D-xylosidases, collectively termed xylanases, represent the two key enzymes responsible for the sequential hydrolysis of xylan. Xylanase cocktails are used on an industrial scale for biotechnological purposes. Lactobacillus rossiae DSM 15814(T) can utilize an extensive set of carbon sources, an ability that is likely to contribute to its adaptive ability. In this study, the capacity of this strain to utilize XOS, xylan, D-xylose and L-arabinose was investigated. RESULTS: Genomic and transcriptomic analyses revealed the presence of two gene clusters, designated xyl and ara, encoding proteins predicted to be responsible for XOS uptake and hydrolysis and D-xylose utilization, and L-arabinose metabolism, respectively. The deduced amino acid sequence of one of the genes of the xyl gene cluster, LROS_1108 (designated here as xylA), shows high similarity to (predicted) ß-D-xylosidases encoded by various lactic acid bacteria, and belongs to glycosyl hydrolase family 43. Heterologously expressed XylA was shown to completely hydrolyse XOS to xylose and showed optimal activity at pH 6.0 and 40 °C. Furthermore, ß-D-xylosidase activity of L. rossiae DSM 15814(T) was also measured under sourdough conditions. CONCLUSIONS: This study highlights the ability of L. rossiae DSM 15814(T) to utilize XOS, which is a very useful trait when selecting starters with specific metabolic performances for sourdough fermentation or as probiotics.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lactobacillus/enzimologia , Lactobacillus/genética , Xilosidases/genética , Xilosidases/metabolismo , Arabinose/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Hidrólise , Lactobacillus/classificação , Família Multigênica , Oligossacarídeos/metabolismo , Filogenia , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura , Xilose/metabolismo , Xilosidases/química
5.
Int J Syst Evol Microbiol ; 64(Pt 1): 198-205, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24048874

RESUMO

A taxonomic study employing a polyphasic approach was performed on a novel anaerobic bacterium isolated from natural gas production-water. The bacterium stained Gram-negative and consisted of non-motile, non-spore-forming, rod-shaped cells. Products of glucose or starch fermentation were ethanol, CO2, formate, acetate and H2. The predominant fatty acids were C16 : 0 ALDE and summed feature 3 comprising C16 : 1ω7c and/or C16 : 1ω6c. The DNA G+C content was 45.5 mol%. 16S rRNA gene sequence analysis demonstrated that the nearest phylogenetic neighbours of the novel strain were Acetivibrio multivorans DSM 6139(T) (98.5 %) and Proteiniclasticum ruminis JCM 14817(T) (95.4 %). The DNA-DNA hybridization value between the novel organism and Acetivibrio multivorans PeC1 DSM 6139(T) was determined to be only 30.2 %, demonstrating the separateness of the two species. Based on phylogenetic, phenotypic and chemotaxonomic evidence that clearly distinguished strain 232.1(T) from Proteiniclasticum ruminis and other close relatives, it is proposed that the novel isolate be classified as representing a novel species of a new genus within the family Clostridiaceae, Youngiibacter fragilis gen. nov., sp. nov. The type strain of the type species is 232.1(T) ( = ATCC BAA-2257(T) = DSM 24749(T)). In addition, Acetivibrio multivorans is proposed to be reclassified as Youngiibacter multivorans comb. nov.


Assuntos
Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Gás Natural/microbiologia , Filogenia , Água/análise , Alaska , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia da Água
6.
Environ Sci Technol ; 47(11): 6052-62, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23614475

RESUMO

Ultralow sulfur diesel (ULSD) fuel has been integrated into the worldwide fuel infrastructure to help meet a variety of environmental regulations. However, desulfurization alters the properties of diesel fuel in ways that could potentially impact its biological stability. Fuel desulfurization might predispose ULSD to biodeterioration relative to sulfur-rich fuels and in marine systems accelerate rates of sulfate reduction, sulfide production, and carbon steel biocorrosion. To test such prospects, an inoculum from a seawater-compensated ballast tank was amended with fuel from the same ship or with refinery fractions of ULSD, low- (LSD), and high sulfur diesel (HSD) and monitored for sulfate depletion. The rates of sulfate removal in incubations amended with the refinery fuels were elevated relative to the fuel-unamended controls but statistically indistinguishable (∼50 µM SO4/day), but they were found to be roughly twice as fast (∼100 µM SO4/day) when the ship's own diesel was used as a source of carbon and energy. Thus, anaerobic hydrocarbon metabolism likely occurred in these incubations regardless of fuel sulfur content. Microbial community structure from each incubation was also largely independent of the fuel amendment type, based on molecular analysis of 16S rRNA sequences. Two other inocula known to catalyze anaerobic hydrocarbon metabolism showed no differences in fuel-associated sulfate reduction or methanogenesis rates between ULSD, LSD, and HSD. These findings suggest that the stability of diesel is independent of the fuel organosulfur compound status and reasons for the accelerated biocorrosion associated with the use of ULSD should be sought elsewhere.


Assuntos
Gasolina/análise , Consórcios Microbianos/genética , Água do Mar/microbiologia , Aço , Enxofre/análise , Anaerobiose , Biodegradação Ambiental , Corrosão , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , RNA Ribossômico 16S , Água do Mar/química , Navios , Sulfatos/química , Enxofre/química
7.
Microorganisms ; 10(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889102

RESUMO

The use of probiotics such as Lactobacillus and Bifidobacterium spp. as a therapeutic against inflammatory bowel disease (IBD) is of significant interest. Lactobacillus salivarus strain UCC118TM is a commensal that has been shown to possess probiotic properties in vitro and anti-infective properties in vivo. However, the usefulness of UCC118 TM as a therapeutic against colitis remains unclear. This study investigates the probiotic potential of Lactobacillus salivarius, UCC118™ in a mouse model of colitis. DSS-induced colitis was coupled with pre-treatment or post-treatment with UCC118TM by daily oral gavage. In the pre-treatment model of colitis, UCC118TM reduced the severity of the disease in the early stages. Improvement in disease severity was coupled with an upregulation of tissue IL-10 levels and increased expression of macrophage M2 markers. This anti-inflammatory activity of UCC118TM was further confirmed in vitro, using a model of LPS-treated bone marrow-derived macrophages. Taken together, these results suggest that UCC118TM may promote the resolution of inflammation. This was supported in a mouse model of established DSS-induced colitis whereby UCC118TM treatment accelerated recovery, as evidenced by weight, stool, histological markers and the recovery of microbiome-associated dysbiosis with an increased abundance of beneficial commensal species. These results demonstrate the potential of Lactobacillus salivarius UCC118TM as a probiotic-based therapeutic strategy to promote health through the upregulation of anti-inflammatory IL-10 and protect against dysbiosis during IBD.

8.
Front Cell Infect Microbiol ; 11: 622491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350128

RESUMO

The metabolite-rich environment that is the intestinal lumen contains metabolic by-products deriving from microbial fermentation and host cell metabolism, with resident macrophages being constantly exposed to this metabolic flux. Succinate, lactate and itaconate are three metabolites secreted by primed macrophages due to a fragmented tri-carboxylic acid (TCA) cycle. Additionally, succinate and lactate are known by-products of microbial fermentation. How these metabolites impact biological functioning of resident macrophages particularly in response to bacterial infection remains poorly understood. We have investigated the potential influence of these metabolites on macrophage phagocytosis and clearance of Escherichia coli (E. coli) infection. Treatment of murine bone-marrow-derived macrophages (BMDMs) with succinate reduced numbers of intracellular E. coli early during infection, while lactate-treated BMDMs displayed no difference throughout the course of infection. Treatment of BMDMs with itaconate lead to higher levels of intracellular E. coli early in the infection with bacterial burden subsequently reduced at later time-points compared to untreated macrophages, indicative of enhanced engulfment and killing capabilities of macrophages in response to itaconate. Expression of engulfment mediators MARCKS, RhoB, and CDC42 were reduced or unchanged following succinate or lactate treatment and increased in itaconate-treated macrophages following E. coli infection. Nitric oxide (NO) levels varied while pro- and anti-inflammatory cytokines differed in secretory levels in all metabolite-treated macrophages post-infection with E. coli or in response to lipopolysaccharide (LPS) stimulation. Finally, the basal phenotypic profile of metabolite-treated macrophages was altered according to marker gene expression, describing how fluid macrophage phenotype can be in response to the microenvironment. Collectively, our data suggests that microbe- and host-derived metabolites can drive distinct macrophage functional phenotypes in response to infection, whereby succinate and itaconate regulate phagocytosis and bactericidal mechanisms, limiting the intracellular bacterial niche and impeding the pathogenesis of infection.


Assuntos
Infecções Bacterianas , Escherichia coli , Animais , Lipopolissacarídeos , Macrófagos , Camundongos , Fagocitose
9.
Environ Sci Technol ; 44(19): 7287-94, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20504044

RESUMO

Hydrocarbon-degrading microorganisms play an important role in the natural attenuation of spilled petroleum in a variety of anoxic environments. The role of benzylsuccinate synthase (BSS) in aromatic hydrocarbon degradation and its use as a biomarker for field investigations are well documented. The recent discovery of alkylsuccinate synthase (ASS) allows the opportunity to test whether its encoding gene, assA, can serve as a comparable biomarker of anaerobic alkane degradation. Degenerate assA- and bssA-targeted PCR primers were designed in order to survey the diversity of genes associated with aromatic and aliphatic hydrocarbon biodegradation in petroleum-impacted environments and enrichment cultures. DNA was extracted from an anaerobic alkane-degrading isolate (Desulfoglaeba alkenexedens ALDC), hydrocarbon-contaminated river and aquifer sediments, a paraffin-degrading enrichment, and a propane-utilizing mixed culture. Partial assA and bssA genes were PCR amplified, cloned, and sequenced, yielding several novel clades of assA genes. These data expand the range of alkane-degrading conditions for which relevant gene sequences are available and indicate that considerable diversity of assA genes can be found in hydrocarbon-impacted environments. The detection of genes associated with anaerobic alkane degradation in conjunction with the in situ detection of alkylsuccinate metabolites was also demonstrated. Comparable molecular signals of assA/bssA were not found when environmental metagenome databases of uncontaminated sites were searched. These data confirm that the assA gene is a useful biomarker for anaerobic alkane metabolism.


Assuntos
Carbono-Carbono Liases/genética , Poluentes Ambientais/toxicidade , Hidrocarbonetos/toxicidade , Proteobactérias/enzimologia , Sequência de Bases , Biodegradação Ambiental , Primers do DNA , Poluentes Ambientais/metabolismo , Hidrocarbonetos/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética
10.
Microbiol Resour Announc ; 9(17)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327521

RESUMO

Anaerobic alkane metabolism is critical in multiple environmental and industrial sectors, including environmental remediation, energy production, refined fuel stability, and biocorrosion. Here, we report the complete gap-closed genome sequence for a model n-alkane-degrading anaerobe, Desulfoglaeba alkanexedens ALDC.

11.
Appl Environ Microbiol ; 75(21): 6662-70, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19734334

RESUMO

The marine nitrogen (N) cycle is a complex network of biological transformations in different N pools. The linkages among these different reservoirs are often poorly understood. Traditional methods for measuring N uptake rely on bulk community properties and cannot provide taxonomic information. (15)N-based stable isotope probing (SIP), however, is a technique that allows detection of uptake of individual N sources by specific microorganisms. In this study we used (15)N SIP methodology to assess the use of different nitrogen substrates by Synechococcus spp. and diatoms on the west Florida shelf. Seawater was incubated in the presence of (15)N-labeled ammonium, nitrate, urea, glutamic acid, and a mixture of 16 amino acids. DNA was extracted and fractionated using CsCl density gradient centrifugation. Quantitative PCR was used to quantify the amounts of Synechococcus and diatom DNA as a function of density, and (15)N tracer techniques were used to measure rates of N uptake by the microbial community. The ammonium, nitrate, urea, and dissolved primary amine uptake rates were 0.077, 0.065, 0.013, and 0.055 micromol N liter(-1) h(-1), respectively. SIP data indicated that diatoms and Synechococcus spp. actively incorporated N from [(15)N]nitrate, [(15)N]ammonium, and [(15)N]urea. Synechococcus also incorporated nitrogen from [(15)N]glutamate and (15)N-amino acids, but no evidence indicating uptake of labeled amino acids by diatoms was detected. These data suggest that N flow in communities containing Synechococcus spp. and diatoms has more plasticity than the new-versus-recycled production paradigm suggests and that these phytoplankters should not be viewed strictly as recycled and new producers, respectively.


Assuntos
Diatomáceas/metabolismo , Compostos de Nitrogênio/metabolismo , Isótopos de Nitrogênio/metabolismo , Água do Mar/microbiologia , Synechococcus/metabolismo , Centrifugação com Gradiente de Concentração/métodos , DNA/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Florida , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Ribulose-Bifosfato Carboxilase/genética , Análise de Sequência de DNA , Coloração e Rotulagem/métodos
12.
Appl Environ Microbiol ; 75(5): 1339-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19114507

RESUMO

Nitrate-reducing enrichments, amended with n-hexadecane, were established with petroleum-contaminated sediment from Onondaga Lake. Cultures were serially diluted to yield a sediment-free consortium. Clone libraries and denaturing gradient gel electrophoresis analysis of 16S rRNA gene community PCR products indicated the presence of uncultured alpha- and betaproteobacteria similar to those detected in contaminated, denitrifying environments. Cultures were incubated with H(34)-hexadecane, fully deuterated hexadecane (d(34)-hexadecane), or H(34)-hexadecane and NaH(13)CO(3). Gas chromatography-mass spectrometry analysis of silylated metabolites resulted in the identification of [H(29)]pentadecanoic acid, [H(25)]tridecanoic acid, [1-(13)C]pentadecanoic acid, [3-(13)C]heptadecanoic acid, [3-(13)C]10-methylheptadecanoic acid, and d(27)-pentadecanoic, d(25)-, and d(2)(4)-tridecanoic acids. The identification of these metabolites suggests a carbon addition at the C-3 position of hexadecane, with subsequent beta-oxidation and transformation reactions (chain elongation and C-10 methylation) that predominantly produce fatty acids with odd numbers of carbons. Mineralization of [1-(14)C]hexadecane was demonstrated based on the recovery of (14)CO(2) in active cultures.


Assuntos
Alcanos/metabolismo , Alphaproteobacteria/metabolismo , Betaproteobacteria/metabolismo , Biodegradação Ambiental , Alphaproteobacteria/química , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Anaerobiose , Betaproteobacteria/química , Betaproteobacteria/classificação , Betaproteobacteria/genética , Ácidos Carboxílicos/análise , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Sedimentos Geológicos/microbiologia , Espectrometria de Massas , Dados de Sequência Molecular , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
13.
Microorganisms ; 7(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818022

RESUMO

The human gastrointestinal (GI) tract is a highly complex organ in which various dynamic physiological processes are tightly coordinated while interacting with a complex community of microorganisms. Within the GI tract, intestinal epithelial cells (IECs) create a structural interface that separates the intestinal lumen from the underlying lamina propria. In the lumen, gut-dwelling microbes play an essential role in maintaining gut homeostasis and functionality. Whether commensal or pathogenic, their interaction with IECs is inevitable. IECs and myeloid immune cells express an array of pathogen recognition receptors (PRRs) that define the interaction of both pathogenic and beneficial bacteria with the intestinal mucosa and mount appropriate responses including induction of barrier-related factors which enhance the integrity of the epithelial barrier. Indeed, the integrity of this barrier and induction of appropriate immune responses is critical to health status, with defects in this barrier and over-activation of immune cells by invading microbes contributing to development of a range of inflammatory and infectious diseases. This review describes the complexity of the GI tract and its interactions with gut bacteria.

14.
Front Immunol ; 10: 1091, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139196

RESUMO

The IL-1 cytokines are a newly expanded family, with each of its 11 members playing an important role in health and disease. Typically acting as pro- or anti-inflammatory mediators of first-line innate immunity, their production is particularly important in the context of mucosal defenses, through handling breach of the delicate epithelial barrier and mediating a local immune response to invading pathogens. Mucosal immunity is often aberrantly orchestrated in intestinal diseases, such as Inflammatory Bowel Disease (IBD). Various studies have pointed to IL-1 cytokines as being important players in IBD with context-dependent roles, either through promoting auto-inflammatory mechanisms, or alleviating disease through protection against breach of pathogens across the epithelial barrier. This mini-review will succinctly examine the role of IL-1 family members in IBD, with a special focus on the recently described IL-33 as well as IL-18, and will explore the disease models within which these cytokines have been studied. Furthermore, we will examine the evidence of interplay of these cytokines with the gut microbiota, with hopes of summarizing our current knowledge of these family members and their potential for unraveling novel molecular mechanisms of IBD pathology.


Assuntos
Suscetibilidade a Doenças , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-18/metabolismo , Interleucina-33/metabolismo , Interações Microbianas , Animais , Suscetibilidade a Doenças/imunologia , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Doenças Inflamatórias Intestinais/patologia
15.
BMJ Open ; 9(8): e028119, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383701

RESUMO

OBJECTIVES: To conduct a UK-wide survey of young people who have experienced cancer, carers and professionals, to identify and prioritise research questions to inform decisions of research funders and support the case for research with this unique cancer population. DESIGN: James Lind Alliance Priority Setting Partnership. SETTING: UK health service and community. METHODS: A steering group oversaw the initiative and partner organisations were recruited. Unanswered questions were collected in an online survey. Evidence searching verified uncertainties. An interim survey was used to rank questions prior to a final prioritisation workshop. PARTICIPANTS: Young people aged 13-24 years with a current or previous cancer diagnosis, their families, friends, partners and professionals who work with this population. RESULTS: Two hundred and ninety-two respondents submitted 855 potential questions. Following a refining process and removal of 'out of scope' questions, 208 unique questions remained. Systematic evidence checking identified seven answered questions and 16 were the subject of ongoing studies. The interim survey was completed by 174 participants. The top 30 questions were prioritised at a workshop attended by 25 young people, parents and multidisciplinary professionals. The top three priorities are: (1) What psychological support package improves psychological well-being, social functioning and mental health during and after treatment? (2) What interventions, including self-care, can reduce or reverse adverse short-term and long-term effects of cancer treatment? (3) What are the best strategies to improve access to clinical trials? The remaining questions reflect the complete cancer pathway: new therapies, life after cancer, support, education/employment, relapse and end-of-life care. CONCLUSIONS: We have identified shared research priorities for young people with cancer using a rigorous, person-centred approach involving stakeholders typically not involved in setting the research agenda. The breadth of priorities suggest future research should focus on holistic and psychosocial care delivery as well as traditional drug/biology research.


Assuntos
Academias e Institutos , Pesquisa Biomédica/organização & administração , Prioridades em Saúde , Neoplasias , Adolescente , Comportamento Cooperativo , Nível de Saúde , Humanos , Reino Unido , Adulto Jovem
16.
Biochem Biophys Res Commun ; 366(1): 142-8, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18053803

RESUMO

The sulfate-reducing strain AK-01 activates alkanes via addition of the subterminal carbon to the double bond of fumarate. This reaction is similar to the action of the glycyl radical enzyme benzylsuccinate synthase (Bss). It was hypothesized that strain AK-01 possesses a similar enzyme. Degenerate bssA primers and inverse PCR were used to amplify two unlinked genes (assA1 and assA2), which encode catalytic subunits of glycyl radical type enzymes. Subsequent genome sequencing of AK-01 revealed two ass operons. SDS-PAGE analysis of AK-01 grown on n-hexadecane revealed a 95-kDa protein which is absent in hexadecanoate-grown cells. LC-MS/MS data obtained from a tryptic digest of this protein match the deduced amino acid sequence encoded by assA1, thus confirming AssA1's involvement in alkane metabolism. This report is the first description of a gene involved in anaerobic n-alkane metabolism in a sulfate-reducer and provides evidence for a novel glycyl radical enzyme.


Assuntos
Alcanos/metabolismo , Amida Sintases/química , Amida Sintases/metabolismo , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/fisiologia , Ácido Succínico/metabolismo , Alcanos/química , Amida Sintases/genética , Sequência de Bases , Dados de Sequência Molecular , Especificidade da Espécie , Ácido Succínico/química
17.
Genes (Basel) ; 9(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558450

RESUMO

Listeria monocytogenes is a major human foodborne pathogen that is prevalent in the natural environment and has a high case fatality rate. Whole genome sequencing (WGS) analysis has emerged as a valuable methodology for the classification of L. monocytogenes isolates and the identification of virulence islands that may influence infectivity. In this study, WGS was used to provide an insight into 25 L. monocytogenes isolates from cases of clinical infection in Ireland between 2013 and 2015. Clinical strains were either lineage I (14 isolates) or lineage II (11 isolates), with 12 clonal complexes (CC) represented, of which CC1 (6) and CC101 (4) were the most common. Single nucleotide polymorphism (SNP) analysis demonstrated that clinical isolates from mother-infant pairs (one isolate from the mother and one from the infant) were highly related (3 SNP differences in each) and also identified close similarities between isolates from otherwise distinct cases (1 SNP difference). Clinical strains were positive for common virulence-associated loci and 13 isolates harbour the LIPI-3 locus. Pulsed-field gel electrophoresis (PFGE) was used to compare strains to a database of 1300 Irish food and food processing environment isolates and determined that 64% of clinical pulsotypes were previously encountered in the food or food processing environment. Five of the matching food and food processing environment isolates were sequenced and results demonstrated a correlation between pulsotype and genotype. Overall, the work provides insights into the nature of L. monocytogenes strains currently causing clinical disease in Ireland and indicates that similar isolates can be found in the food or food processing environment.

18.
Front Microbiol ; 8: 99, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197141

RESUMO

Corrosion processes in two North Sea oil production pipelines were studied by analyzing pig envelope samples via metagenomic and metabolomic techniques. Both production systems have similar physico-chemical properties and injection waters are treated with nitrate, but one pipeline experiences severe corrosion and the other does not. Early and late pigging material was collected to gain insight into the potential causes for differential corrosion rates. Metabolites were extracted and analyzed via ultra-high performance liquid chromatography/high-resolution mass spectrometry with electrospray ionization (ESI) in both positive and negative ion modes. Metabolites were analyzed by comparison with standards indicative of aerobic and anaerobic hydrocarbon metabolism and by comparison to predicted masses for KEGG metabolites. Microbial community structure was analyzed via 16S rRNA gene qPCR, sequencing of 16S PCR products, and MySeq Illumina shotgun sequencing of community DNA. Metagenomic data were used to reconstruct the full length 16S rRNA genes and genomes of dominant microorganisms. Sequence data were also interrogated via KEGG annotation and for the presence of genes related to terminal electron accepting (TEA) processes as well as aerobic and anaerobic hydrocarbon degradation. Significant and distinct differences were observed when comparing the 'high corrosion' (HC) and the 'low corrosion' (LC) pipeline systems, especially with respect to the TEA utilization potential. The HC samples were dominated by sulfate-reducing bacteria (SRB) and archaea known for their ability to utilize simple carbon substrates, whereas LC samples were dominated by pseudomonads with the genetic potential for denitrification and aerobic hydrocarbon degradation. The frequency of aerobic hydrocarbon degradation genes was low in the HC system, and anaerobic hydrocarbon degradation genes were not detected in either pipeline. This is in contrast with metabolite analysis, which demonstrated the presence of several succinic acids in HC samples that are diagnostic of anaerobic hydrocarbon metabolism. Identifiable aerobic metabolites were confined to the LC samples, consistent with the metagenomic data. Overall, these data suggest that corrosion management might benefit from a more refined understanding of microbial community resilience in the face of disturbances such as nitrate treatment or pigging, which frequently prove insufficient to alter community structure toward a stable, less-corrosive assemblage.

19.
Genome Announc ; 5(19)2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28495762

RESUMO

Listeria monocytogenes is a Gram-positive opportunistic pathogen that is the causative agent of listeriosis. Here, we report the draft genome sequences of 25 L. monocytogenes strains isolated from patients with clinical listeriosis in the Republic of Ireland between 2013 and 2015.

20.
FEMS Microbiol Ecol ; 92(5): fiw062, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27009900

RESUMO

Microbial transformation of n-alkanes in anaerobic ecosystems plays a pivotal role in biogeochemical carbon cycling and bioremediation, but the requisite genetic machinery is not well elucidated.Desulfatibacillum alkenivorans AK-01 utilizes n-alkanes (C13 to C18) and contains two genomic loci encoding alkylsuccinate synthase (ASS) gene clusters. ASS catalyzes alkane addition to fumarate to form methylalkylsuccinic acids. We hypothesized that the genes in the two clusters would be differentially expressed depending on the alkane substrate utilized for growth. RT-qPCR was used to investigate ass-gene expression across AK-01's known substrate range, and microarray-based transcriptomic analysis served to investigate whole-cell responses to growth on n-hexadecane versus hexadecanoate. RT-qPCR revealed induction of ass gene cluster 1 during growth on all tested alkane substrates, and the transcriptional start sites in cluster 1 were determined via 5'RACE. Induction of ass gene cluster 2 was not observed under the tested conditions. Transcriptomic analysis indicated that the upregulation of genes potentially involved in methylalkylsuccinate metabolism, including methylmalonyl-CoA mutase and a putative carboxyl transferase. These findings provide new directions for studying the transcriptional regulation of genes involved in alkane addition to fumarate, fumarate recycling and the processing of methylalkylsuccinates with regard to isolates, enrichment cultures and ecological datasets.


Assuntos
Alcanos/metabolismo , Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , Poluentes Ambientais/metabolismo , Transcrição Gênica , Biodegradação Ambiental , Deltaproteobacteria/classificação , Deltaproteobacteria/metabolismo , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Ácido Palmítico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA