RESUMO
With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-ß, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.
Assuntos
Infecções por HIV , Pneumonia , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Macaca mulatta , Infecções por HIV/patologia , Pulmão/patologia , Inflamação/patologia , Pneumonia/patologia , Fibrose , Derivados da MorfinaRESUMO
Increased life expectancy of patients diagnosed with HIV in the current era of antiretroviral therapy is unfortunately accompanied with the prevalence of HIV-associated neurocognitive disorders (HANDs) and risk of comorbidities such as Alzheimer-like pathology. HIV-1 transactivator of transcription (Tat) protein has been shown to induce the production of toxic neuronal amyloid protein and also enhance neurotoxicity. The contribution of astrocytes in Tat-mediated amyloidosis remains an enigma. We report here, in simian immunodeficiency virus (SIV)+ rhesus macaques and patients diagnosed with HIV, brain region-specific up-regulation of amyloid precursor protein (APP) and Aß (40 and 42) in astrocytes. In addition, we find increased expression of ß-site cleaving enzyme (BACE1), APP, and Aß in human primary astrocytes (HPAs) exposed to Tat. Mechanisms involved up-regulation of hypoxia-inducible factor (HIF-1α), its translocation and binding to the long noncoding RNA (lncRNA) BACE1-antisense transcript (BACE1-AS), resulting, in turn, in the formation of the BACE1-AS/BACE1 RNA complex, subsequently leading to increased BACE1 protein, and activity and generation of Aß-42. Gene silencing approaches confirmed the regulatory role of HIF-1α in BACE1-AS/BACE1 in Tat-mediated amyloidosis. This is the first report implicating the role of the HIF-1α/lncRNABACE1-AS/BACE1 axis in Tat-mediated induction of astrocytic amyloidosis, which could be targeted as adjunctive therapies for HAND-associated Alzheimer-like comorbidity.
Assuntos
Amiloidose/virologia , Astrócitos/metabolismo , Infecções por HIV/complicações , Transtornos Neurocognitivos/virologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Infecções por HIV/metabolismo , HIV-1 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macaca mulatta , Pessoa de Meia-Idade , Transtornos Neurocognitivos/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para CimaRESUMO
HIV persists in cellular reservoirs despite effective combined antiretroviral therapy (cART) and there is viremia flare up upon therapy interruption. Opioids modulate the immune system and suppress antiviral gene responses, which significantly impact people living with HIV (PLWH). However, the effect of opioids on viral reservoir dynamics remain elusive. Herein, we developed a morphine dependent SIVmac251 infected Rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. RMs on a morphine (or saline control) regimen were infected with SIVmac251. The cART was initiated in approximately half the animals five weeks post-infection, and morphine/saline administration continued until the end of the study. Among the untreated RM, we did not find any difference in plasma/CSF or in cell-associated DNA/RNA viral load in anatomical tissues. On the other hand, within the cART suppressed macaques, there was a reduction in cell-associated DNA load, intact proviral DNA levels, and in inducible SIV reservoir in lymph nodes (LNs) of morphine administered RMs. In distinction to LNs, in the CNS, the size of latent SIV reservoirs was higher in the CD11b+ microglia/macrophages in morphine dependent RMs. These results suggest that in the proposed model, morphine plays a differential role in SIV reservoirs by reducing the CD4+ T-cell reservoir in lymphoid tissues, while increasing the microglia/reservoir size in CNS tissue. The findings from this pre-clinical model will serve as a tool for screening therapeutic strategies to reduce/eliminate HIV reservoirs in opioid dependent PLWH.IMPORTANCE Identification and clearance of HIV reservoirs is a major challenge in achieving a cure for HIV. This is further complicated by co-morbidities that may alter the size of the reservoirs. There is an overlap between the risk factors for HIV and opioid abuse. Opiates have been recognized as prominent co-morbidities in HIV-infected populations. People infected with HIV also abusing opioids have immune modulatory effects and more severe neurological disease. However, the impact of opioid abuse on HIV reservoirs remains unclear. In this study, we used morphine dependent SIVmac251 infected rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. Our studies suggested that people with HIV who abuse opioids had higher reservoirs in CNS than the lymphoid system. Extrapolating the macaque findings in humans suggests that such differential modulation of HIV reservoirs among people living with HIV abusing opioids could be considered for future HIV cure research efforts.
RESUMO
The present study demonstrates HIV-1 Tat-mediated epigenetic downregulation of microglial miR-124 and its association with microglial activation. Exposure of mouse primary microglia isolated from newborn pups of either sex to HIV-1 Tat resulted in decreased expression of primary miR-124-1, primary miR-124-2 as well as the mature miR-124. In parallel, HIV-1 Tat exposure to mouse primary microglial cells resulted in increased expression of DNA methylation enzymes, such as DNMT1, DNMT3A, and DNMT3B, which were also accompanied by increased global DNA methylation. Bisulfite-converted genomic DNA sequencing in the HIV-1 Tat-exposed mouse primary microglial cells further confirmed increased DNA methylation of the primary miR-124-1 and primary miR-124-2 promoters. Bioinformatic analyses identified MECP2 as a novel 3'-UTR target of miR-124. This was further validated in mouse primary microglial cells wherein HIV-1 Tat-mediated downregulation of miR-124 resulted in increased expression of MECP2, leading in turn to further repression of miR-124 via the feedback loop. In addition to MECP2, miR-124 also modulated the levels of STAT3 through its binding to the 3'-UTR, leading to microglial activation. Luciferase assays and Ago2 immunoprecipitation determined the direct binding between miR-124 and 3'-UTR of both MECP2 and STAT3. Gene silencing of MECP2 and DNMT1 and overexpression of miR-124 blocked HIV-1 Tat-mediated downregulation of miR-124 and microglial activation. In vitro findings were also confirmed in the basal ganglia of SIV-infected rhesus macaques (both sexes). In summary, our findings demonstrate a novel mechanism of HIV-1 Tat-mediated activation of microglia via downregulation of miR-124, leading ultimately to increased MECP2 and STAT3 signaling.SIGNIFICANCE STATEMENT Despite the effectiveness of combination antiretroviral therapy in controlling viremia, the CNS continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Tat protein. Understanding the epigenetic/molecular mechanism(s) by which viral proteins, such as HIV-1 Tat, can activate microglia is thus of paramount importance. This study demonstrated that HIV-1 Tat-mediated DNA methylation of the miR-124 promoter leads to its downregulation with a concomitant upregulation of the MECP2-STAT3-IL6, resulting in microglial activation. These findings reveal an unexplored epigenetic/molecular mechanism(s) underlying HIV-1 Tat-mediated microglial activation, thereby providing a potential target for the development of therapeutics aimed at ameliorating microglial activation and neuroinflammation in the context of HIV-1 infection.
Assuntos
Infecções por HIV/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Microglia/virologia , Fator de Transcrição STAT3/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Feminino , Regulação da Expressão Gênica/fisiologia , HIV-1 , Macaca mulatta , Masculino , Camundongos , MicroRNAs/genética , Microglia/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismoRESUMO
Neuroinflammation associated with HIV-1 infection is a problem affecting â¼50% of HIV-infected individuals. NLR family pyrin domain containing 3 (NLRP3) inflammasome has been implicated in HIV-induced microglial activation, but the mechanism(s) remain unclear. Because HIV-1 Transactivator of Transcription (Tat) protein continues to be present despite antiretroviral therapy and activates NF-kB, we hypothesized that Tat could prime the NLRP3 inflammasome. We found a dose- and time-dependent induction of NLRP3 expression in microglia exposed to Tat compared with control. Tat exposure also time-dependently increased the mature caspase-1 and IL-1ß levels and enhanced the IL-1ß secretion. These in vitro findings were validated in archival brain tissues from Simian Immunodeficiency Virus (SIV)-infected and uninfected rhesus macaques. Further validation of NLRP3 priming in vivo involved administration of lipopolysaccharide (LPS) to HIV transgenic (Tg) rats followed by assessment of IL-1ß mRNA expression and inflammasome activation (ASC oligomers and mature IL-1ß). Intriguingly, LPS potentiated upregulation of IL-1ß mRNA and inflammasome activation in HIV-Tg rats compared with the wild-type controls. Interestingly, we found an inverse relationship in the expression of NLRP3 and its negative regulator, miR-223, suggesting a miR-223-mediated mechanism for Tat-induced NLRP3 priming. Furthermore, blockade of NLRP3 resulted in decreased IL-1ß secretion. Collectively, these findings suggest a novel role of Tat in priming and activating the NLRP3 inflammasome. Therefore, NLRP3 can be envisioned as a therapeutic target for ameliorating Tat-mediated neuroinflammation.SIGNIFICANCE STATEMENT Despite successful suppression of viremia with increased longevity in the era of combined antiretroviral therapy, chronic inflammation with underlying neurocognitive impairment continues to afflict almost 50% of infected individuals. Viral, bacterial, and cellular products have all been implicated in promoting the chronic inflammation found in these individuals. Understanding the molecular mechanism(s) by which viral proteins such as HIV-1 Transactivator of Transcription (Tat) protein can activate microglia is thus of paramount importance. Herein, we demonstrate a novel role of Tat in priming and activating NLR family pyrin domain containing 3 (NLRP3) inflammasomes in microglial cells and in HIV-Tg rats administered lipopolysaccharide. Targeting NLRP3 inflammasome pathway mediators could thus be developed as therapeutic interventions to alleviate or prevent neuroinflammation and subsequent cognitive impairment in HIV-positive patients.
Assuntos
Encéfalo/imunologia , Encefalite Viral/imunologia , Inflamassomos/imunologia , Microglia/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Animais , Citocinas/imunologia , Feminino , Mediadores da Inflamação/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Ratos , Ratos TransgênicosRESUMO
A nanoformulated myristoylated dolutegravir prodrug (NMDTG) was prepared using good laboratory practice protocols. Intramuscular injection of NMDTG (118 ± 8 mg/ml, 25.5 mg of DTG equivalents/kg of body weight) to three rhesus macaques led to plasma DTG levels of 86 ± 12 and 28 ± 1 ng/ml on days 35 and 91, respectively. The NMDTG platform showed no significant adverse events. Further modification may further extend the drug's apparent half-life for human use.
Assuntos
Compostos Heterocíclicos com 3 Anéis/farmacocinética , Pró-Fármacos/farmacocinética , Animais , Preparações de Ação Retardada , Inibidores de Integrase de HIV/administração & dosagem , Inibidores de Integrase de HIV/sangue , Inibidores de Integrase de HIV/farmacocinética , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/sangue , Injeções Intramusculares , Macaca mulatta , Masculino , Nanocompostos/administração & dosagem , Oxazinas , Piperazinas , Pró-Fármacos/administração & dosagem , Pró-Fármacos/síntese química , PiridonasRESUMO
BACKGROUND: Neuroinflammation associated with advanced human immunodeficiency virus (HIV)-1 infection is often exacerbated by chronic cocaine abuse. Cocaine exposure has been demonstrated to mediate up-regulation of inflammatory mediators in in vitro cultures of microglia. The molecular mechanisms involved in this process, however, remain poorly understood. In this study, we sought to explore the underlying signaling pathways involved in cocaine-mediated activation of microglial cells. METHODS: BV2 microglial cells were exposed to cocaine and assessed for toll-like receptor (TLR2) expression by quantitative polymerase chain reaction (qPCR), western blot, flow cytometry, and immunofluorescence staining. The mRNA and protein levels of cytokines (TNFα, IL-6, MCP-1) were detected by qPCR and ELISA, respectively; level of reactive oxygen species (ROS) production was examined by the Image-iT LIVE Green ROS detection kit; activation of endoplasmic reticulum (ER)-stress pathways were detected by western blot. Chromatin immunoprecipitation (ChIP) assay was employed to discern the binding of activating transcription factor 4 (ATF4) with the TLR2 promoter. Immunoprecipitation followed by western blotting with tyrosine antibody was used to determine phosphorylation of TLR2. Cocaine-mediated up-regulation of TLR2 expression and microglial activation was validated in cocaine-injected mice. RESULTS: Exposure of microglial cells to cocaine resulted in increased expression of TLR2 with a concomitant induction of microglial activation. Furthermore, this effect was mediated by NADPH oxidase-mediated rapid accumulation of ROS with downstream activation of the ER-stress pathways as evidenced by the fact that cocaine exposure led to up-regulation of pPERK/peIF2α/ATF4 and TLR2. The novel role of ATF4 in the regulation of TLR2 expression was confirmed using genetic and pharmacological approaches. CONCLUSIONS: xThe current study demonstrates that cocaine-mediated activation of microglia involves up-regulation of TLR2 through the ROS-ER stress-ATF4-TLR2 axis. Understanding the mechanism(s) involved in cocaine-mediated up-regulation of ROS-ER stress/TLR2 expression and microglial activation could have implications for the development of potential therapeutic targets aimed at resolving neuroinflammation in cocaine abusers.
Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.
Assuntos
Complexo AIDS Demência/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , HIV-1/química , Mitocôndrias/metabolismo , Neurônios/metabolismo , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise/genética , HIV-1/patogenicidade , HIV-1/fisiologia , Humanos , Masculino , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurônios/patologia , Proteoma/genética , Proteoma/metabolismo , Ratos , Ratos Transgênicos , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologiaRESUMO
The abuse of opiates such as morphine in synergy with HIV infection accelerates neurocognitive impairments and neuropathology in the CNS of HIV-infected subjects, collectively referred to as HAND. To identify potential pathogenic markers associated with HIV and morphine in perturbing the synaptic architecture, we performed quantitative mass spectrometry proteomics on purified synaptosomes isolated from the caudate of two groups of rhesus macaques chronically infected with SIV differing by one regimen-morphine treatment. The upregulation of heat shock 70-kDa protein 5 in the SIV + morphine group points to increased cellular stress during SIV/morphine interaction thus leading to CNS dysfunction.
Assuntos
Analgésicos Opioides/toxicidade , Proteínas de Choque Térmico/biossíntese , Morfina/toxicidade , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Sinapses/metabolismo , Animais , Western Blotting , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Humanos , Macaca mulatta , Neurônios/efeitos dos fármacos , Proteômica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sinapses/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Regulação para CimaRESUMO
Recruitment of immune cells such as monocytes/macrophages and dendritic cells (DCs) across the blood-brain barrier (BBB) has been documented in diseases involving neuroinflammation. Neuroinvasion by HIV leads to neurocognitive diseases and alters the permeability of the BBB. Likewise, many HIV patients use drugs of abuse such as morphine, which can further compromise the BBB. While the role of monocytes and macrophages in neuroAIDS is well established, research demonstrating the presence and role of DCs in the CNS during HIV infection has not been developed yet. In this respect, this study explored the presence of DCs in the brain parenchyma of rhesus macaques infected with a neurovirulent form of SIV (SIV mac239 R71/17E) and administered with morphine. Cells positive for DC markers including CD11c (integrin), macDC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin), CD83 (a maturation factor), and HLA-DR (MHC class II) were consistently found in the brain parenchyma of SIV-infected macaques as well as infected macaques on morphine. Control animals did not exhibit any DC presence in their brains. These results provide first evidence of DCs' relevance in NeuroAIDS vis-à-vis drugs of abuse and open new avenues of understanding and investigative HIV-CNS inflictions.
Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Morfina/farmacologia , Entorpecentes/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Movimento Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Expressão Gênica , Macaca mulatta , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologiaRESUMO
Our previous findings demonstrated that astrocytic HIF-1α plays a major role in HIV-1 Tat-mediated amyloidosis which can lead to Alzheimer's-like pathology-a comorbidity of HIV-Associated Neurocognitive Disorders (HAND). These amyloids can be shuttled in extracellular vesicles, and we sought to assess whether HIV-1 Tat stimulated astrocyte-derived EVs (ADEVs) containing the toxic amyloids could result in neuronal injury in vitro and in vivo. We thus hypothesized that blocking HIF-1α could likely mitigate HIV-1 Tat-ADEV-mediated neuronal injury. Rat hippocampal neurons when exposed to HIV-1 Tat-ADEVs carrying the toxic amyloids exhibited amyloid accumulation and synaptodendritic injury, leading to functional loss as evidenced by alterations in miniature excitatory post synaptic currents. The silencing of astrocytic HIF-1α not only reduced the biogenesis of ADEVs, as well as amyloid cargos, but also ameliorated neuronal synaptodegeneration. Next, we determined the effect of HIV-1 Tat-ADEVs carrying amyloids in the hippocampus of naive mice brains. Naive mice receiving the HIV-1 Tat-ADEVs, exhibited behavioural changes, and Alzheimer's 's-like pathology accompanied by synaptodegeneration. This impairment(s) was not observed in mice injected with HIF-1α silenced ADEVs. This is the first report demonstrating the role of amyloid-carrying ADEVs in mediating synaptodegeneration leading to behavioural changes associated with HAND and highlights the protective role of HIF-1α.
Assuntos
Astrócitos , Vesículas Extracelulares , HIV-1 , Hipocampo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neurônios , Vesículas Extracelulares/metabolismo , Animais , Astrócitos/metabolismo , Camundongos , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , HIV-1/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/etiologia , Infecções por HIV/metabolismo , Infecções por HIV/complicações , Masculino , Complexo AIDS Demência/metabolismoRESUMO
HIV-associated neurologic disorders (HAND) are estimated to affect almost 60% of HIV-infected individuals. HIV encephalitis, the pathologic correlate of the most severe form of HAND, is often characterized by glial activation, cytokine-chemokine dysregulation, and neuronal damage and loss. However, the severity of HIV encephalitis correlates better with glial activation rather than viral load. Using the macaque model, it has been demonstrated that SIV encephalitis correlates with increased expression of the mitogen platelet-derived growth factor (PDGF) B chain in the brain. The goal of this study was to explore the role of PDGF-B chain in HIV-associated activation and proliferation of astrocytes. Specifically, the data demonstrate that exposure of rat and human astrocytes to the HIV-1 protein Tat resulted in the induction of PDGF at both the mRNA and protein levels. Furthermore, PDGF-BB induction was regulated by activation of ERK1/2 and JNK signaling pathways and the downstream transcription factor early growth response 1. Chromatin immunoprecipitation assays demonstrated binding of Egr-1 to the PDGF-B promoter. Exposure of astrocytes to PDGF-BB in turn led to increased proliferation and the release of proinflammatory cytokines MCP-1 and IL-1ß. Because astrogliosis is linked to disease severity, understanding its regulation by PDGF-BB could aid in the development of therapeutic intervention strategies for HAND.
Assuntos
Astrócitos/imunologia , Astrócitos/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Fator de Crescimento Derivado de Plaquetas/biossíntese , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Animais , Astrócitos/patologia , Becaplermina , Linhagem Celular Tumoral , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , HIV-1/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Proto-Oncogênicas c-sis , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Regulação para Cima/genética , Regulação para Cima/imunologiaRESUMO
Morphine administration causes system-level metabolic changes. Here, we show that morphine-tolerant mice exhibited distinct plasma metabolic signatures upon acute and chronic administration. We utilized a mouse model of morphine tolerance by exposing mice to increasing doses of the drug over 4 days. We collected plasma samples from mice undergoing acute or chronic morphine or saline injections and analyzed them using targeted GC-MS-based metabolomics to profile approximately 80 metabolites involved in the central carbon, amino acid, nucleotide, and lipid metabolism. Our findings reveal distinct alterations in plasma metabolite concentrations in response to acute or chronic morphine intake, and these changes were linked to the development of tolerance to morphine's analgesic effects. We identified several metabolites that had been differentially affected by acute versus chronic morphine use, suggesting that metabolic changes may be mitigated by prolonged exposure to the drug. Morphine-tolerant mice showed a restoration of amino acid and glycolytic metabolites. Additionally, we conducted reconstructed metabolic network analysis on the first 30 VIP-ranked metabolites from the PLSDA of the saline, acute, and morphine-tolerant mice groups, which uncovered four interaction networks involving the amino acid metabolism, the TCA cycle, the glutamine-phenylalanine-tyrosine pathway, and glycolysis. These pathways were responsible for the metabolic differences observed following distinct morphine administration regimens. Overall, this study provides a valuable resource for future investigations into the role of metabolites in morphine-induced analgesia and associated effects following acute or chronic use in mice.
RESUMO
Cocaine abuse is known to cause inflammation, oxidative injury and alterations in the gut microbiota. Although emerging studies have demonstrated the role of gut microbiota in modulating neurological complications and behavior, the mechanism(s) underlying these processes remain unclear. In the present study, we investigated the protective effect of Lactobacillus rhamnosus probiotic on cocaine-induced oxidative stress, glial activation, and locomotion in mice. In this study, groups of male C56BL6 mice were administered gut-resident commensal bacteria L. rhamnosus probiotic (oral gavage) concurrently with cocaine (20 mg/kg, i.p.) or saline for 28 days and assessed for oxidative stress and cellular activation in both the gut and brain as well as alterations in locomotion behavior. Cocaine-induced gut dysregulation was associated with increased formation of 4-hydroxynonenal (4-HNE) adducts, increased expression of pERK-1/2, pNF-kB-p65 and antioxidant mediators (SOD1, GPx1). In cocaine administered mice, there was increased activation of both microglia and astrocytes in the striatum and cortex of the brain as shown by enhanced expression of CD11b and GFAP, respectively. Cocaine administration also resulted in increased locomotor activity in the open field test in these mice. Administration of L. rhamnosus attenuated cocaine-induced gut oxidative stress and inflammation as well as glial activation and locomotion. These results suggest the potential of microbial-based interventions to attenuate cocaine-mediated behavioral responses and neuroinflammation, in addition to systemic inflammation and oxidative damage.
Assuntos
Cocaína , Lacticaseibacillus rhamnosus , Masculino , Animais , Camundongos , Cocaína/toxicidade , Antígeno CD11b , Locomoção , Estresse OxidativoRESUMO
The twin pandemics of opioid abuse and HIV infection can have devastating effects on physiological systems, including on the brain. Our previous work found that morphine increased the viral reservoir in the brains of treated SIV-infected macaques. In this study, we investigated the interaction of morphine and SIV to identify novel host-specific targets using a multimodal approach. We probed systemic parameters and performed single-cell examination of the targets for infection in the brain, microglia and macrophages. Morphine treatment created an immunosuppressive environment, blunting initial responses to infection, which persisted during antiretroviral treatment. Antiretroviral drug concentrations and penetration into the cerebrospinal fluid and brain were unchanged by morphine treatment. Interestingly, the transcriptional signature of both microglia and brain macrophages was transformed to one of a neurodegenerative phenotype. Notably, the expression of osteopontin, a pleiotropic cytokine, was significantly elevated in microglia. This was especially notable in the white matter, which is also dually affected by HIV and opioids. Increased osteopontin expression was linked to numerous HIV neuropathogenic mechanisms, including those that can maintain a viral reservoir. The opioid morphine is detrimental to SIV/HIV infection, especially in the brain.
Assuntos
Infecções por HIV , Morfina , Animais , Morfina/farmacologia , Osteopontina/genética , Encéfalo , Analgésicos Opioides , Antirretrovirais , Macaca , Expressão GênicaRESUMO
Background: Commonly used opioids, such as morphine have been implicated in augmented SIV/HIV persistence within the central nervous system (CNS). However, the extent of myeloid cell polarization and viral persistence in different brain regions remains unclear. Additionally, the additive effects of morphine on SIV/HIV dysregulation of gut-brain crosstalk remain underexplored. Therefore, studies focused on understanding how drugs of abuse such as morphine affect immune dynamics, viral persistence and gut-brain interrelationships are warranted. Materials and methods: For a total of 9 weeks, rhesus macaques were ramped-up, and twice daily injections of either morphine (n = 4) or saline (n = 4) administered. This was later followed with infection with SHIVAD8EO variants. At necropsy, mononuclear cells were isolated from diverse brain [frontal lobe, cerebellum, medulla, putamen, hippocampus (HIP) and subventricular zone (SVZ)] and gut [lamina propria (LP) and muscularis (MUSC) of ascending colon, duodenum, and ileum] regions. Multiparametric flow cytometry was used to were profile for myeloid cell polarity/activation and results corroborated with indirect immunofluorescence assays. Simian human immunodeficiency virus (SHIV) DNA levels were measured with aid of the digital droplet polymerase chain reaction (PCR) assay. Luminex assays were then used to evaluate soluble plasma/CSF biomarker levels. Finally, changes in the fecal microbiome were evaluated using 16S rRNA on the Illumina NovaSeq platform. Results: Flow Cytometry-based semi-supervised analysis revealed that morphine exposure led to exacerbated M1 (CD14/CD16)/M2 (CD163/CD206) polarization in activated microglia that spanned across diverse brain regions. This was accompanied by elevated SHIV DNA within the sites of neurogenesis-HIP and SVZ. HIP/SVZ CD16+ activated microglia positively correlated with SHIV DNA levels in the brain (r = 0.548, p = 0.042). Simultaneously, morphine dependence depleted butyrate-producing bacteria, including Ruminococcus (p = 0.05), Lachnospira (p = 0.068) genera and Roseburia_sp_831b (p = 0.068). Finally, morphine also altered the regulation of CNS inflammation by reducing the levels of IL1 Receptor antagonist (IL1Ra). Conclusion: These findings are suggestive that morphine promotes CNS inflammation by altering receptor modulation, increasing myeloid brain activation, distorting gut-brain crosstalk, and causing selective enhancement of SHIV persistence in sites of neurogenesis.
RESUMO
Microglia, the primary immunocompetent cells of the brain, are suggested to play a role in the development of drug addiction. Previous studies have identified the microglia-derived pro-inflammatory factor IL1ß can promote the progression of cocaine addiction. Additionally, the activation status of microglia and "two-hit hypothesis" have been proposed in the field of drug addiction to explain how early life stress (ELS) could significantly increase the incidence of drug addiction in later life. However, the mechanisms underlying microglia prime and full activation and their roles in drug addiction remain greatly unexplored. Here, we employed CX3CR1-GFP mice (CX3CR1 functional deficiency, CX3CR1-/-) to explore whether primed microglia could potentiate cocaine-mediated behavioral changes and the possible underlying mechanisms. CX3CR1-/- mice revealed higher hyperlocomotion activity and conditional place preference than wild-type (WT) mice did under cocaine administration. In parallel, CX3CR1-/- mice showed higher activity of NLR family pyrin domain-containing 3 (NLRP3) inflammasome than WT mice. Interestingly, CX3CR1 deficiency itself could prime NLRP3 signaling by increasing the expression of NLPR3 and affect lysosome biogenesis under basal conditions. Taken together, our findings demonstrated that the functional status of microglia could have an impact on cocaine-mediated reward effects, and NLRP3 inflammasome activity was associated with this phenomenon. This study was consistent with the two-hit hypothesis and provided solid evidence to support the involvement of microglia in drug addiction. Targeting the NLRP3 inflammasome may represent a novel therapeutic approach for ameliorating or blocking the development of drug addiction.
RESUMO
Despite the promising therapeutic effects of combinatory antiretroviral therapy (cART), 20% to 30% of HIV/AIDS patients living with long term infection still exhibit related cognitive and motor disorders. Clinical studies in HIV-infected patients revealed evidence of basal ganglia dysfunction, tremors, fine motor movement deficits, gait, balance, and increased risk of falls. Among older HIV+ adults, the frequency of cases with SNCA/α-synuclein staining is higher than in older healthy persons and may predict an increased risk of developing a neurodegenerative disease. The accumulation of SNCA aggregates known as Lewy Bodies is widely described to be directly linked to motor dysfunction. These aggregates are naturally removed by Macroautophagy/autophagy, a cellular housekeeping mechanism, that can be disturbed by HIV-1. The molecular mechanisms involved in linking HIV-1 proteins and autophagy remain mostly unclear and necessitates further exploration. We showed that HIV-1 Vpr protein triggers the accumulation of SNCA in neurons after decreasing lysosomal acidification, deregulating lysosome positioning, and the expression levels of several proteins involved in lysosomal maturation. Viruses and retroviruses such as HIV-1 are known to manipulate autophagy in order to use it for their replication while blocking the degradative final step, which could destroy the virus itself. Our study highlights how the suppression of neuronal autophagy by HIV-1 Vpr is a mechanism leading to toxic protein aggregation and neurodegeneration.Abbreviations: BLOC1: Biogenesis of Lysosome-related Organelles Complex 1; CART: combinatory antiretroviral therapy; CVB: coxsackievirus; DAPI: 4',6-diamidino-2-phenylindole; DENV: dengue virus; GFP: green fluorescent protein; HCV: hepatitis C virus; HCMV: human cytomegalovirus; HIV: human immunodeficiency virus; Env: HIV-1 envelope glycoproteins; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; VSV: Indiana vesiculovirus; LTR: Long Terminal Repeat; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MLBs: multilamellar bodies; RIPA: Radioimmunoprecipitation assay buffer; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; Tat: transactivator of TAR; TEM: transmission electron microscope; Vpr: Viral protein R.
Assuntos
Complexo AIDS Demência/etiologia , Lisossomos/virologia , Neurônios/virologia , alfa-Sinucleína/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Animais , Autofagossomos/virologia , Western Blotting , Encéfalo/patologia , Encéfalo/virologia , Imunofluorescência , HIV-1 , Humanos , Lisossomos/fisiologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Neurônios/metabolismo , Neurônios/fisiologiaRESUMO
Chemokine (C-C motif) ligand 2 (CCL2), also known as monocyte chemoattractant protein-1, plays a critical role in leukocyte recruitment and activation. In the present study, we identify an additional role for CCL2 that of neuroprotection against HIV-1 transactivator protein (Tat) toxicity in rat primary midbrain neurons. Furthermore, we report the involvement of transient receptor potential canonical (TRPC) channels in CCL2-mediated neuroprotection. TRPC are Ca(2+)-permeable, nonselective cation channels with a variety of physiological functions. Blockage of TRPC channels resulted in suppression of both CCL2-mediated neuroprotection and intracellular Ca(2+) elevations. Parallel but distinct extracellular signal-regulated kinase (ERK)/cAMP response element-binding protein (CREB) and Akt/nuclear factor kappaB (NF-kappaB) pathways were involved in the CCL2-mediated neuroprotection. Blocking TRPC channels and specific downregulation of TRPC channels 1 and 5 resulted in suppression of CCL2-induced ERK/CREB activation but not Akt/NF-kappaB activation. In vivo relevance of these findings was further corroborated in wild-type and CCR2 knock-out mice. In the wild-type but not CCR2 knock-out mice, exogenous CCL2 exerted neuroprotection against intrastriatal injection of HIV-1 Tat. These findings clearly demonstrate a novel role of TRPC channels in the protection of neurons against Tat through the CCL2/CCR2 axis.
Assuntos
Quimiocina CCL2/fisiologia , Canais de Cátion TRPC/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Injeções Intraventriculares , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Gravidez , Ratos , Ratos Sprague-Dawley , Produtos do Gene tat do Vírus da Imunodeficiência Humana/administração & dosagemRESUMO
Although cocaine exposure has been shown to potentiate neuroinflammation by upregulating glial activation in the brain, the role of mitophagy in this process remains an enigma. In the present study, we sought to examine the role of impaired mitophagy in cocaine-mediated activation of microglia and to determine the ameliorative potential of superoxide dismutase mimetics in this context. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to cocaine resulted in decreased mitochondrial membrane potential, that was accompanied by increased expression of mitophagy markers, PINK1 and PRKN. Exposure of microglia to cocaine also resulted in increased expression of DNM1L and OPTN with a concomitant decrease in the rate of mitochondrial oxygen consumption as well as impaired mitochondrial functioning. Additionally, in the presence of cocaine, microglia also exhibited upregulated expression of autophagosome markers, BECN1, MAP1LC3B-II, and SQSTM1. Taken together, these findings suggested diminished mitophagy flux and accumulation of mitophagosomes in the presence of cocaine. These findings were further confirmed by imaging techniques such as transmission electron microscopy and confocal microscopy. Cocaine-mediated activation of microglia was further monitored by assessing the expression of the microglial marker (ITGAM) and the inflammatory cytokine (Tnf, Il1b, and Il6) mRNAs. Pharmacological, as well as gene-silencing approaches aimed at blocking both the autophagy/mitophagy and SIGMAR1 expression, underscored the role of impaired mitophagy in cocaine-mediated activation of microglia. Furthermore, superoxide dismutase mimetics such as TEMPOL and MitoTEMPO were shown to alleviate cocaine-mediated impaired mitophagy as well as microglial activation.Abbreviations: 3-MA: 3-methyladenine; Δψm: mitochondrial membrane potential; ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATP: adenosine triphosphate; BAF: bafilomycin A1; BECN1: beclin 1, autophagy related; CNS: central nervous system; DNM1L: dynamin 1 like; DMEM: Dulbecco modified Eagle medium; DAPI: 4,6-Diamidino-2-phenylindole; DRD2: dopamine receptor D2; ECAR: extracellular acidification rate; FBS: fetal bovine serum; FCCP: Trifluoromethoxy carbonylcyanide phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IL1B: interleukin 1, beta; IL6: interleukin 6; ITGAM: integrin subunit alpha M; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mPMs: mouse primary microglial cells; MRC: maximal respiratory capacity; NFKB: nuclear factor kappa B; NLRP3: NLR family pyrin domain containing 3; NTRK2: neurotrophic receptor tyrosine kinase 2; OCR: oxygen consumption rate; OPTN: optineurin; PBS: phosphate buffered saline; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TNF: tumor necrosis factor.