Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Immunol ; 12(7): 616-23, 2011 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-21666690

RESUMO

Type I natural killer T cells (NKT cells) are characterized by an invariant variable region 14-joining region 18 (V(α)14-J(α)18) T cell antigen receptor (TCR) α-chain and recognition of the glycolipid α-galactosylceramide (α-GalCer) restricted to the antigen-presenting molecule CD1d. Here we describe a population of α-GalCer-reactive NKT cells that expressed a canonical V(α)10-J(α)50 TCR α-chain, which showed a preference for α-glucosylceramide (α-GlcCer) and bacterial α-glucuronic acid-containing glycolipid antigens. Structurally, despite very limited TCRα sequence identity, the V(α)10 TCR-CD1d-α-GlcCer complex had a docking mode similar to that of type I TCR-CD1d-α-GalCer complexes, although differences at the antigen-binding interface accounted for the altered antigen specificity. Our findings provide new insight into the structural basis and evolution of glycolipid antigen recognition and have notable implications for the scope and immunological role of glycolipid-specific T cell responses.


Assuntos
Galactosilceramidas/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Adjuvantes Imunológicos/farmacologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Antígenos CD1d/imunologia , Linhagem Celular , Galactosilceramidas/farmacologia , Glucuronatos/imunologia , Humanos , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T alfa-beta/genética
2.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910301

RESUMO

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Assuntos
Doenças Autoimunes/imunologia , Citometria de Fluxo , Infecções/imunologia , Neoplasias/imunologia , Animais , Doença Crônica , Humanos , Camundongos , Guias de Prática Clínica como Assunto
3.
Eur J Immunol ; 49(10): 1457-1973, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31633216

RESUMO

These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.


Assuntos
Alergia e Imunologia/normas , Separação Celular/métodos , Separação Celular/normas , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Consenso , Humanos , Fenótipo
4.
Immunity ; 34(3): 327-39, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21376639

RESUMO

Natural killer T (NKT) cells respond to a variety of CD1d-restricted antigens (Ags), although the basis for Ag discrimination by the NKT cell receptor (TCR) is unclear. Here we have described NKT TCR fine specificity against several closely related Ags, termed altered glycolipid ligands (AGLs), which differentially stimulate NKT cells. The structures of five ternary complexes all revealed similar docking. Acyl chain modifications did not affect the interaction, but reduced NKT cell proliferation, indicating an affect on Ag processing or presentation. Conversely, truncation of the phytosphingosine chain caused an induced fit mode of TCR binding that affected TCR affinity. Modifications in the glycosyl head group had a direct impact on the TCR interaction and associated cellular response, with ligand potency reflecting the t(1/2) life of the interaction. Accordingly, we have provided a molecular basis for understanding how modifications in AGLs can result in striking alterations in the cellular response of NKT cells.


Assuntos
Antígenos CD1d/imunologia , Epitopos , Células T Matadoras Naturais/imunologia , Animais , Sequência de Carboidratos , Linhagem Celular , Proliferação de Células , Glicolipídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Células T Matadoras Naturais/citologia , Receptores de Células Matadoras Naturais/imunologia
5.
Immunol Cell Biol ; 97(8): 689-699, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323167

RESUMO

Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize antigens derived from riboflavin biosynthesis. In addition to anti-microbial functions, human MAIT cells are associated with cancers, autoimmunity, allergies and inflammatory disorders, although their role is poorly understood. Activated MAIT cells are well known for their rapid release of Th1 and Th17 cytokines, but we have discovered that chronic stimulation can also lead to potent interleukin (IL)-13 expression. We used RNA-seq and qRT-PCR to demonstrate high expression of the IL-13 gene in chronically stimulated MAIT cells, and directly identify IL-13 using intracellular flow cytometry and multiplex bead analysis of MAIT cell cultures. This unexpected finding has important implications for IL-13-dependent diseases, such as colorectal cancer (CRC), that occur in mucosal areas where MAIT cells are abundant. We identify MAIT cells near CRC tumors and show that these areas and precancerous polyps express high levels of the IL-13 receptor, which promotes tumor progression and metastasis. Our data suggest that MAIT cells have a more complicated role in CRC than currently realized and that they represent a promising new target for immunotherapies where IL-13 can be a critical factor.


Assuntos
Neoplasias Colorretais/imunologia , Interleucina-13/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Lesões Pré-Cancerosas/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Colo/citologia , Colo/imunologia , Colo/patologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Humanos , Imunoterapia/métodos , Interleucina-13/imunologia , Subunidade alfa1 de Receptor de Interleucina-13 , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Ativação Linfocitária/imunologia , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/metabolismo , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/terapia , RNA-Seq , Receptores de Interleucina-13/metabolismo , Reto/citologia , Reto/imunologia , Reto/patologia
6.
Immunol Cell Biol ; 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29504657

RESUMO

Natural Killer T (NKT) cells are a functionally diverse population that recognizes lipid-based antigens in association with the antigen-presenting molecule CD1d. Here, we define a technique to separate the functionally distinct thymic NKT1, NKT2 and NKT17 cell subsets by their surface expression of CD278 (ICOS) and the activation-associated glycoform of CD43, enabling the investigation of subset-specific effector-functions. We report that all three subsets express the transcription factor GATA-3 and the potential to produce IL-4 and IL-10 following activation. This questions the notion that NKT2 cells are the predominant source of IL-4 within the NKT cell pool, and suggests that IL-10-production may be more indicative of NKT cell plasticity than the existence of a distinct regulatory lineage or subset. We also show that many NKT17 cells are CD4+ and are biased toward Vß8.3 TCR gene usage. Lastly, we demonstrate that the toll-like receptor (TLR) ligand lipopolysaccharide (LPS) can induce a NKT17 cell-biased response, even in the absence of exogenous antigen, and that combining LPS with α-GalCer resulted in enhanced IL-17A-production, and reduced levels of the immunosuppressive cytokine IL-10. This study provides a novel means to examine the context-dependent reactivity of the functionally heterogeneous NKT cell population and provides important new insight into the functional biology of these subsets.

7.
J Immunol ; 195(10): 4604-14, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26423148

RESUMO

NKT cells recognize lipid-based Ags presented by CD1d. Type I NKT cells are often referred to as invariant owing to their mostly invariant TCR α-chain usage (Vα14-Jα18 in mice, Vα24-Jα18 in humans). However, these cells have diverse TCR ß-chains, including Vß8, Vß7, and Vß2 in mice and Vß11 in humans, joined to a range of TCR Dß and Jß genes. In this study, we demonstrate that TCR ß-chain composition can dramatically influence lipid Ag recognition in an Ag-dependent manner. Namely, the glycolipids α-glucosylceramide and isoglobotrihexosylceramide were preferentially recognized by Vß7(+) NKT cells from mice, whereas the α-galactosylceramide analog OCH, with a truncated sphingosine chain, was preferentially recognized by Vß8(+) NKT cells from mice. We show that the influence of the TCR ß-chain is due to a combination of Vß-, Jß-, and CDR3ß-encoded residues and that these TCRs can recapitulate the selective Ag reactivity in TCR-transduced cell lines. Similar observations were made with human NKT cells where different CDR3ß-encoded residues determined Ag preference. These findings indicate that NKT TCR ß-chain diversity results in differential and nonhierarchical Ag recognition by these cells, which implies that some Ags can preferentially activate type I NKT cell subsets.


Assuntos
Antígenos CD1d/imunologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Glucosilceramidas/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Variação Genética/genética , Globosídeos/imunologia , Humanos , Lipídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triexosilceramidas/imunologia
8.
J Immunol ; 187(9): 4705-13, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21964029

RESUMO

NKT cells respond to a variety of CD1d-restricted glycolipid Ags that are structurally related to the prototypic Ag α-galactosylceramide (α-GalCer). A modified analog of α-GalCer with a carbon-based glycosidic linkage (α-C-GalCer) has generated great interest because of its apparent ability to promote prolonged, Th1-biased immune responses. In this study, we report the activation of spleen NKT cells to α-C-GalCer, and related C-glycoside ligands, is weaker than that of α-GalCer. Furthermore, the Vß8.2 and Vß7 NKT TCR affinity for CD1d-α-C-GalCer, and some related analogs, is ∼10-fold lower than that for the NKT TCR-CD1d-α-GalCer interaction. Nevertheless, the crystal structure of the Vß8.2 NKT TCR-CD1d-α-C-GalCer complex is similar to that of the corresponding NKT TCR-CD1d-α-GalCer complex, although subtle differences at the interface provide a basis for understanding the lower affinity of the NKT TCR-CD1d-α-C-GalCer interaction. Our findings support the concept that for CD1d-restricted NKT cells, altered glycolipid ligands can promote markedly different responses while adopting similar TCR-docking topologies.


Assuntos
Antígenos CD1d/metabolismo , Galactosilceramidas/metabolismo , Células T Matadoras Naturais/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Animais , Antígenos CD1d/imunologia , Configuração de Carboidratos , Células Cultivadas , Cristalografia por Raios X , Galactosilceramidas/imunologia , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
9.
J Med Internet Res ; 15(12): e286, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24351420

RESUMO

BACKGROUND: Information is lacking about the capacity of those working in community practice settings to utilize health information technology for colorectal cancer screening. OBJECTIVE: To address this gap we asked those working in community practice settings to share their perspectives about how the implementation of a Web-based patient-led decision aid might affect patient-clinician conversations about colorectal cancer screening and the day-to-day clinical workflow. METHODS: Five focus groups in five community practice settings were conducted with 8 physicians, 1 physician assistant, and 18 clinic staff. Focus groups were organized using a semistructured discussion guide designed to identify factors that mediate and impede the use of a Web-based decision aid intended to clarify patient preferences for colorectal cancer screening and to trigger shared decision making during the clinical encounter. RESULTS: All physicians, the physician assistant, and 8 of the 18 clinic staff were active participants in the focus groups. Clinician and staff participants from each setting reported a belief that the Web-based patient-led decision aid could be an informative and educational tool; in all but one setting participants reported a readiness to recommend the tool to patients. The exception related to clinicians from one clinic who described a preference for patients having fewer screening choices, noting that a colonoscopy was the preferred screening modality for patients in their clinic. Perceived barriers to utilizing the Web-based decision aid included patients' lack of Internet access or low computer literacy, and potential impediments to the clinics' daily workflow. Expanding patients' use of an online decision aid that is both easy to access and understand and that is utilized by patients outside of the office visit was described as a potentially efficient means for soliciting patients' screening preferences. Participants described that a system to link the online decision aid to a computerized reminder system could promote a better understanding of patients' screening preferences, though some expressed concern that such a system could be difficult to keep up and running. CONCLUSIONS: Community practice clinicians and staff perceived the Web-based decision aid technology as promising but raised questions as to how the technology and resultant information would be integrated into their daily practice workflow. Additional research investigating how to best implement online decision aids should be conducted prior to the widespread adoption of such technology so as to maximize the benefits of the technology while minimizing workflow disruptions.


Assuntos
Neoplasias Colorretais/prevenção & controle , Técnicas de Apoio para a Decisão , Internet , Programas de Rastreamento/métodos , Idoso , Centros Comunitários de Saúde , Tomada de Decisões , Feminino , Grupos Focais , Humanos , Masculino , Programas de Rastreamento/psicologia , Programas de Rastreamento/estatística & dados numéricos , Pessoa de Meia-Idade , Participação do Paciente , Atenção Primária à Saúde , Telemedicina
10.
Chem Sci ; 14(29): 7887-7896, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502334

RESUMO

Natural Killer T (NKT) cells are a lipid-antigen reactive T cell subset that is restricted to the antigen presenting molecule CD1d. They possess diverse functional properties that contribute to inflammatory and regulatory immune responses. The most studied lipid antigen target for these T cells is α-galactosylceramide (αGC). The commensal organism Bacteroides fragilis (B. fragilis) produces several forms of αGC, but conflicting information exists about the influence of these lipids on NKT cells. Herein, we report the total synthesis of a major form of αGC from B. fragilis (Bf αGC), and several analogues thereof. We confirm the T cell receptor (TCR)-mediated recognition of these glycolipids by mouse and human NKT cells. Despite the natural structure of Bf αGC containing lipid branching that limits potency, we demonstrate that Bf αGC drives mouse NKT cells to proliferate and differentiate into producers of the immunoregulatory cytokine, interleukin-10 (IL-10). These Bf αGC-experienced NKT cells display regulatory function by inhibiting the expansion of naïve NKT cells upon subsequent exposure to this antigen. Moreover, this regulatory activity impacts more than just NKT cells, as demonstrated by the NKT cell-mediated inhibition of antigen-stimulated mucosal-associated invariant T (MAIT) cells (a T cell subset restricted to a different antigen presenting molecule, MR1). These findings reveal that B. fragilis-derived NKT cell agonists may have broad immunoregulatory activity, providing insight into the mechanisms influencing immune tolerance to commensal bacteria and highlighting a potential means to manipulate NKT cell function for therapeutic benefit.

11.
Front Microbiol ; 14: 1065609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350788

RESUMO

The development of virus-like particle (VLP) based vaccines for human papillomavirus, hepatitis B and hepatitis E viruses represented a breakthrough in vaccine development. However, for dengue and COVID-19, technical complications, such as an incomplete understanding of the requirements for protective immunity, but also limitations in processes to manufacture VLP vaccines for enveloped viruses to large scale, have hampered VLP vaccine development. Selecting the right adjuvant is also an important consideration to ensure that a VLP vaccine induces protective antibody and T cell responses. For diseases like COVID-19 and dengue fever caused by RNA viruses that exist as families of viral variants with the potential to escape vaccine-induced immunity, the development of more efficacious vaccines is also necessary. Here, we describe the development and characterisation of novel VLP vaccine candidates using SARS-CoV-2 and dengue virus (DENV), containing the major viral structural proteins, as protypes for a novel approach to produce VLP vaccines. The VLPs were characterised by Western immunoblot, enzyme immunoassay, electron and atomic force microscopy, and in vitro and in vivo immunogenicity studies. Microscopy techniques showed proteins self-assemble to form VLPs authentic to native viruses. The inclusion of the glycolipid adjuvant, α-galactosylceramide (α-GalCer) in the vaccine formulation led to high levels of natural killer T (NKT) cell stimulation in vitro, and strong antibody and memory CD8+ T cell responses in vivo, demonstrated with SARS-CoV-2, hepatitis C virus (HCV) and DEN VLPs. This study shows our unique vaccine formulation presents a promising, and much needed, new vaccine platform in the fight against infections caused by enveloped RNA viruses.

12.
RSC Adv ; 12(29): 18493-18500, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799937

RESUMO

Isoglobotrihexosylceramide (iGb3) is a known NKT cell agonist, however the specific interactions required to trigger NKT cell TCR activation in response to this mammalian glycolipid are not fully understood. Here we report the synthesis of 1,3-ß-Gal-LacCer (ßG-iGb3) that displays a ß-linked terminal sugar. ßG-iGb3 activated NKT cells to a similar extent as iGb3 with a terminal α-linkage, indicating that the conformation of the terminal sugar residue of iGb3 is not essential to facilitate NKT cell TCR recognition. In addition, the immunological activity of four recently described iGb3 analogues with modifications to their terminal sugar or lipid backbone were also investigated. These iGb3 analogues all induced NKT cell proliferation, with IL-13 the predominate cytokine detected. This highlights the ability of the NKT cell TCR to accommodate variations in iGb3-based glycolipids and suggests that undiscovered NKT cell ligands may exist within the lacto-series of mammalian glycosphingolipids.

13.
J Immunol Methods ; 382(1-2): 150-9, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22683545

RESUMO

NKT cells are key mediators of antiviral and anticancer immunity. Experiments in mice have demonstrated that activation of NKT cells in vivo induces the expression of multiple effector molecules critical to successful immunity. Human clinical trials have shown similar responses, although in vivo activation of NKT cells in humans or primate models are far more limited in number and scope. Measuring ex vivo activation of NKT cells by the CD1d-restricted glycolipid ligand α-Galactosylceramide (α-GalCer) through cytokine expression profiles is a useful marker of NKT cell function, but for reasons that are unclear, this approach does not appear to work as well in humans and non-human primate macaque models in comparison to mice. We performed a series of experiments on human and macaque (Macaca nemestrina) fresh whole blood samples to define optimal conditions to detect NKT cell cytokine (TNF, IFNγ, IL-2) and degranulation marker (CD107a) expression by flow cytometry. We found that conditions previously described for mouse splenocyte NKT cell activation were suboptimal on human or macaque blood NKT cells. In contrast, a 6h incubation with brefeldin A added for the last 4h, in a 96-well plate based assay, and using an α-GalCer concentration of 1 µg/ml were optimal methods to stimulate NKT cells in fresh blood from both humans and macaques. Unexpectedly, we noted that blood NKT cells from macaques infected with SIV were more readily activated by α-GalCer than NKT cells from uninfected macaques, suggesting that SIV infection may have primed the NKT cells. In conclusion, we describe optimized methods for the ex vivo antigen-specific activation of human and macaque blood NKT cells. These assays should be useful in monitoring NKT cells in disease and in immunotherapy studies.


Assuntos
Galactosilceramidas/imunologia , Macaca nemestrina/imunologia , Células T Matadoras Naturais/imunologia , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/citologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA