Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 132(9)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30890650

RESUMO

It has long been established that neuronal growth cone navigation depends on changes in microtubule (MT) and F-actin architecture downstream of guidance cues. However, the mechanisms by which MTs and F-actin are dually coordinated remain a fundamentally unresolved question. Here, we report that the well-characterized MT polymerase, XMAP215 (also known as CKAP5), plays an important role in mediating MT-F-actin interaction within the growth cone. We demonstrate that XMAP215 regulates MT-F-actin alignment through its N-terminal TOG 1-5 domains. Additionally, we show that XMAP215 directly binds to F-actin in vitro and co-localizes with F-actin in the growth cone periphery. We also find that XMAP215 is required for regulation of growth cone morphology and response to the guidance cue, Ephrin A5. Our findings provide the first strong evidence that XMAP215 coordinates MT and F-actin interaction in vivo We suggest a model in which XMAP215 regulates MT extension along F-actin bundles into the growth cone periphery and that these interactions may be important to control cytoskeletal dynamics downstream of guidance cues. This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Cones de Crescimento/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Orientação de Axônios/efeitos dos fármacos , Efrina-A5/farmacologia , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
2.
Dev Dyn ; 248(4): 296-305, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30682232

RESUMO

BACKGROUND: The mammalian guanine deaminase (GDA), called cypin, is important for proper neural development, by regulating dendritic arborization through modulation of microtubule (MT) dynamics. Additionally, cypin can promote MT assembly in vitro. However, it has never been tested whether cypin (or other GDA orthologs) binds to MTs or modulates MT dynamics. Here, we address these questions and characterize Xenopus laevis GDA (Gda) for the first time during embryonic development. RESULTS: We find that exogenously expressed human cypin and Gda both display a cytosolic distribution in primary embryonic cells. Furthermore, while expression of human cypin can promote MT polymerization, Xenopus Gda has no effect. Additionally, we find that the tubulin-binding collapsin response mediator protein (CRMP) homology domain is only partially conserved between cypin and Gda. This likely explains the divergence in function, as we discovered that the cypin region containing the CRMP homology and PDZ-binding domain is necessary for regulating MT dynamics. Finally, we observed that gda is strongly expressed in the kidneys during late embryonic development, although it does not appear to be critical for kidney development. CONCLUSIONS: Together, these results suggest that GDA has diverged in function between mammals and amphibians, and that mammalian GDA plays an indirect role in regulating MT dynamics. Developmental Dynamics 248:296-305, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Guanina Desaminase/fisiologia , Rim/enzimologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Embrião não Mamífero/enzimologia , Guanina Desaminase/metabolismo , Humanos , Rim/embriologia , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
3.
Cytoskeleton (Hoboken) ; 77(7): 277-291, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543081

RESUMO

Axon guidance is a critical process in forming the connections between a neuron and its target. The growth cone steers the growing axon toward the appropriate direction by integrating extracellular guidance cues and initiating intracellular signal transduction pathways downstream of these cues. The growth cone generates these responses by remodeling its cytoskeletal components. Regulation of microtubule dynamics within the growth cone is important for making guidance decisions. TACC3, as a microtubule plus-end binding (EB) protein, modulates microtubule dynamics during axon outgrowth and guidance. We have previously shown that Xenopus laevis embryos depleted of TACC3 displayed spinal cord axon guidance defects, while TACC3-overexpressing spinal neurons showed increased resistance to Slit2-induced growth cone collapse. Tyrosine kinases play an important role in relaying guidance signals to downstream targets during pathfinding events via inducing tyrosine phosphorylation. Here, in order to investigate the mechanism behind TACC3-mediated axon guidance, we examined whether tyrosine residues that are present in TACC3 have any role in regulating TACC3's interaction with microtubules or during axon outgrowth and guidance behaviors. We find that the phosphorylatable tyrosines within the TACC domain are important for the microtubule plus-end tracking behavior of TACC3. Moreover, TACC domain phosphorylation impacts axon outgrowth dynamics such as growth length and growth persistency. Together, our results suggest that tyrosine phosphorylation of TACC3 affects TACC3's microtubule plus-end tracking behavior as well as its ability to mediate axon growth dynamics in cultured embryonic neural tube explants.


Assuntos
Orientação de Axônios/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tirosina/metabolismo , Humanos , Fosforilação , Transdução de Sinais
4.
Neural Dev ; 12(1): 3, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202041

RESUMO

BACKGROUND: Formation of precise neuronal connections requires proper axon guidance. Microtubules (MTs) of the growth cone provide a critical driving force during navigation of the growing ends of axons. Pioneer MTs and their plus-end tracking proteins (+TIPs) are thought to play integrative roles during this navigation. TACC3 is a + TIP that we have previously implicated in regulating MT dynamics within axons. However, the role of TACC3 in axon guidance has not been previously explored. RESULTS: Here, we show that TACC3 is required to promote persistent axon outgrowth and prevent spontaneous axon retractions in embryonic Xenopus laevis neurons. We also show that overexpressing TACC3 can counteract the depolymerizing effect of low doses of nocodazole, and that TACC3 interacts with MT polymerase XMAP215 to promote axon outgrowth. Moreover, we demonstrate that manipulation of TACC3 levels interferes with the growth cone response to the axon guidance cue Slit2 ex vivo, and that ablation of TACC3 causes pathfinding defects in axons of developing spinal neurons in vivo. CONCLUSION: Together, our results suggest that by mediating MT dynamics, the + TIP TACC3 is involved in axon outgrowth and pathfinding decisions of neurons during embryonic development.


Assuntos
Orientação de Axônios , Fatores de Transcrição/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Cones de Crescimento/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Crescimento Neuronal , Polimerização , Xenopus laevis
5.
Cytoskeleton (Hoboken) ; 73(9): 461-76, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26783725

RESUMO

The growth cone is a unique structure capable of guiding axons to their proper destinations. Within the growth cone, extracellular guidance cues are interpreted and then transduced into physical changes in the actin filament (F-actin) and microtubule cytoskeletons, providing direction and movement. While both cytoskeletal networks individually possess important growth cone-specific functions, recent data over the past several years point towards a more cooperative role between the two systems. Facilitating this interaction between F-actin and microtubules, microtubule plus-end tracking proteins (+TIPs) have been shown to link the two cytoskeletons together. Evidence suggests that many +TIPs can couple microtubules to F-actin dynamics, supporting both microtubule advance and retraction in the growth cone periphery. In addition, growing in vitro and in vivo data support a secondary role for +TIPs in which they may participate as F-actin nucleators, thus directly influencing F-actin dynamics and organization. This review focuses on how +TIPs may link F-actin and microtubules together in the growth cone, and how these interactions may influence axon guidance. © 2016 Wiley Periodicals, Inc.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cones de Crescimento/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Humanos , Ácido gama-Aminobutírico
6.
Integr Biol (Camb) ; 8(3): 267-86, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26928161

RESUMO

Consistently-biased left-right (LR) patterning is required for the proper placement of organs including the heart and viscera. The LR axis is especially fascinating as an example of multi-scale pattern formation, since here chiral events at the subcellular level are integrated and amplified into asymmetric transcriptional cascades and ultimately into the anatomical patterning of the entire body. In contrast to the other two body axes, there is considerable controversy about the earliest mechanisms of embryonic laterality. Many molecular components of asymmetry have not been widely tested among phyla with diverse bodyplans, and it is unknown whether parallel (redundant) pathways may exist that could reverse abnormal asymmetry states at specific checkpoints in development. To address conservation of the early steps of LR patterning, we used the Xenopus laevis (frog) embryo to functionally test a number of protein targets known to direct asymmetry in plants, fruit fly, and rodent. Using the same reagents that randomize asymmetry in Arabidopsis, Drosophila, and mouse embryos, we show that manipulation of the microtubule and actin cytoskeleton immediately post-fertilization, but not later, results in laterality defects in Xenopus embryos. Moreover, we observed organ-specific randomization effects and a striking dissociation of organ situs from effects on the expression of left side control genes, which parallel data from Drosophila and mouse. Remarkably, some early manipulations that disrupt laterality of transcriptional asymmetry determinants can be subsequently "rescued" by the embryo, resulting in normal organ situs. These data reveal the existence of novel corrective mechanisms, demonstrate that asymmetric expression of Nodal is not a definitive marker of laterality, and suggest the existence of amplification pathways that connect early cytoskeletal processes to control of organ situs bypassing Nodal. Counter to alternative models of symmetry breaking during neurulation (via ciliary structures absent in many phyla), our data suggest a widely-conserved role for the cytoskeleton in regulating left-right axis formation immediately after fertilization of the egg. The novel mechanisms that rescue organ situs, even after incorrect expression of genes previously considered to be left-side master regulators, suggest LR patterning as a new context in which to explore multi-scale redundancy and integration of patterning from the subcellular structure to the entire bodyplan.


Assuntos
Padronização Corporal/fisiologia , Citoesqueleto/fisiologia , Animais , Arabidopsis , Padronização Corporal/genética , Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Microtúbulos/fisiologia , Miosinas/genética , Miosinas/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA