Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inflamm Res ; 73(4): 563-580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411635

RESUMO

BACKGROUND: Altered expression of vacuole membrane protein 1 (VMP1) has recently been observed in the context of multiple sclerosis and Parkinson's disease (PD). However, how changes in VMP1 expression may impact pathogenesis has not been explored. OBJECTIVE: This study aimed to characterize how altered VMP1 expression affects NLRP3 inflammasome activation and mitochondrial function. METHODS: VMP1 expression was depleted in a monocytic cell line using CRISPR-Cas9. The effect of VMP1 on NLRP3 inflammasome activation was examined by stimulating cells with LPS and ATP or α-synuclein fibrils. Inflammasome activation was determined by caspase-1 activation using both a FLICA assay and a biosensor as well as by the release of proinflammatory molecules measured by ELISA. RNA-sequencing was utilized to define global gene expression changes resulting from VMP1 deletion. SERCA activity and mitochondrial function were investigated using various fluorescence microscopy-based approaches including a novel method that assesses the function of individual mitochondria in a cell. RESULTS: Here, we report that genetic deletion of VMP1 from a monocytic cell line resulted in increased NLRP3 inflammasome activation and release of proinflammatory molecules. Examination of the VMP1-dependent changes in these cells revealed that VMP1 deficiency led to decreased SERCA activity and increased intracellular [Ca2+]. We also observed calcium overload in mitochondria in VMP1 depleted cells, which was associated with mitochondrial dysfunction and release of mitochondrial DNA into the cytoplasm and the extracellular environment. CONCLUSIONS: Collectively, these studies reveal VMP1 as a negative regulator of inflammatory responses, and we postulate that decreased expression of VMP1 can aggravate the inflammatory sequelae associated with neurodegenerative diseases like PD.


Assuntos
Inflamassomos , Doenças Mitocondriais , Humanos , Inflamassomos/metabolismo , Proteínas de Membrana/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vacúolos/metabolismo
2.
J Neuroinflammation ; 20(1): 196, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635235

RESUMO

BACKGROUND: Individuals who have experienced mild traumatic brain injuries (mTBIs) suffer from several comorbidities, including chronic pain. Despite extensive studies investigating the underlying mechanisms of mTBI-associated chronic pain, the role of inflammation in long-term pain after mTBIs is not fully elucidated. Given the shifting dynamics of inflammation, it is important to understand the spatial-longitudinal changes in inflammatory processes following mTBIs and their effects on TBI-related pain. METHODS: We utilized a recently developed transgenic caspase-1 luciferase reporter mouse model to monitor caspase-1 activation through a thinned skull window in the in vivo setting following three closed-head mTBI events. Organotypic coronal brain slice cultures and acutely dissociated dorsal root ganglion (DRG) cells provided tissue-relevant context of inflammation signal. Mechanical allodynia was assessed by mechanical withdrawal threshold to von Frey and thermal hyperalgesia withdrawal latency to radiant heat. Mouse grimace scale (MGS) was used to detect spontaneous or non-evoked pain. In some experiments, mice were prophylactically treated with MCC950, a potent small molecule inhibitor of NLRP3 inflammasome assembly to inhibit injury-induced inflammatory signaling. Bioluminescence spatiotemporal dynamics were quantified in the head and hind paws, and caspase-1 activation was confirmed by immunoblot. Immunofluorescence staining was used to monitor the progression of astrogliosis and microglial activation in ex vivo brain tissue following repetitive closed-head mTBIs. RESULTS: Mice with repetitive closed-head mTBIs exhibited significant increases of the bioluminescence signals within the brain and paws in vivo for at least one week after each injury. Consistently, immunoblotting and immunofluorescence experiments confirmed that mTBIs led to caspase-1 activation, astrogliosis, and microgliosis. Persistent changes in MGS and hind paw withdrawal thresholds, indicative of pain states, were observed post-injury in the same mTBI animals in vivo. We also observed enhanced inflammatory responses in ex vivo brain slice preparations and DRG for at least 3 days following mTBIs. In vivo treatment with MCC950 significantly reduced caspase-1 activation-associated bioluminescent signals in vivo and decreased stimulus-evoked and non-stimulus evoked nociception. CONCLUSIONS: Our findings suggest that the inflammatory states in the brain and peripheral nervous system following repeated mTBIs are coincidental with the development of nociceptive sensitization, and that these events can be significantly reduced by inhibition of NLRP3 inflammasome activation.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Dor Crônica , Animais , Camundongos , Gliose , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nociceptividade , Hiperalgesia/etiologia , Caspase 1
3.
J Immunol ; 206(9): 2101-2108, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33846225

RESUMO

Acute graft-versus-host disease (aGvHD) is a severe, often lethal, complication of hematopoietic stem cell transplantation, and although prophylactic regimens are given as standard pretransplantation therapy, up to 60% of these patients develop aGvHD, and require additional immunosuppressive intervention. We treated mice with a purified probiotic molecule, exopolysaccharide (EPS) from Bacillus subtilis, shortly before and after induction of aGvHD and found that, whereas only 10% of control mice survived to day 80, 70% of EPS-treated mice survived to 80 d. EPS treatment of donor-only mice resulted in ∼60% survival. Using a biosensor mouse model to assess inflammation in live mice during aGvHD, we found that EPS prevented the activation of alloreactive donor T cells. In vitro, EPS did not affect T cells directly but, instead, induced bone marrow-derived dendritic cells (BMDCs) that displayed characteristics of inhibitory dendritic cells (DCs). Development of these BMDCs required TLR4 signaling through both MyD88 and TRIF pathways. Using BMDCs derived from IDO knockout mice, we showed that T cell inhibition by EPS-treated BMDCs was mediated through the suppressive effects of IDO. These studies describe a bacterial molecule that modulates immune responses by inducing inhibitory DCs in a TLR4-dependent manner, and these cells have the capacity to inhibit T cell activation through IDO. We suggest that EPS or EPS-treated DCs can serve as novel agents for preventing aGvHD.


Assuntos
Bacillus subtilis/química , Doença Enxerto-Hospedeiro/imunologia , Polissacarídeos Bacterianos/imunologia , Animais , Bacillus subtilis/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Neuroinflammation ; 18(1): 263, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758843

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is established to drive pathological sequelae in organ systems outside the intestine, including the central nervous system (CNS). Many patients exhibit cognitive deficits, particularly during disease flare. The connection between colonic inflammation and neuroinflammation remains unclear and characterization of the neuroinflammatory phenotype in the brain during colitis is ill-defined. METHODS: Transgenic mice expressing a bioluminescent reporter of active caspase-1 were treated with 2% dextran sodium sulfate (DSS) for 7 days to induce acute colitis, and colonic, systemic and neuroinflammation were assessed. In some experiments, mice were prophylactically treated with paquinimod (ABR-215757) to inhibit S100A9 inflammatory signaling. As a positive control for peripheral-induced neuroinflammation, mice were injected with lipopolysaccharide (LPS). Colonic, systemic and brain inflammatory cytokines and chemokines were measured by cytokine bead array (CBA) and Proteome profiler mouse cytokine array. Bioluminescence was quantified in the brain and caspase activation was confirmed by immunoblot. Immune cell infiltration into the CNS was measured by flow cytometry, while light sheet microscopy was used to monitor changes in resident microglia localization in intact brains during DSS or LPS-induced neuroinflammation. RNA sequencing was performed to identify transcriptomic changes occurring in the CNS of DSS-treated mice. Expression of inflammatory biomarkers were quantified in the brain and serum by qRT-PCR, ELISA and WB. RESULTS: DSS-treated mice exhibited clinical hallmarks of colitis, including weight loss, colonic shortening and inflammation in the colon. We also detected a significant increase in inflammatory cytokines in the serum and brain, as well as caspase and microglia activation in the brain of mice with ongoing colitis. RNA sequencing of brains isolated from DSS-treated mice revealed differential expression of genes involved in the regulation of inflammatory responses. This inflammatory phenotype was similar to the signature detected in LPS-treated mice, albeit less robust and transient, as inflammatory gene expression returned to baseline following cessation of DSS. Pharmacological inhibition of S100A9, one of the transcripts identified by RNA sequencing, attenuated colitis severity and systemic and neuroinflammation. CONCLUSIONS: Our findings suggest that local inflammation in the colon drives systemic inflammation and neuroinflammation, and this can be ameliorated by inhibition of the S100 alarmin, S100A9.


Assuntos
Encéfalo/fisiopatologia , Calgranulina B/genética , Colite/induzido quimicamente , Colite/prevenção & controle , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/fisiopatologia , Quinolinas/uso terapêutico , Animais , Biomarcadores , Caspase 1/metabolismo , Quimiocinas/metabolismo , Colite/fisiopatologia , Citocinas/metabolismo , Sulfato de Dextrana , Humanos , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
J Immunol ; 203(9): 2497-2507, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562211

RESUMO

Inflammasomes are multiprotein complexes that coordinate cellular inflammatory responses and mediate host defense. Following recognition of pathogens and danger signals, inflammasomes assemble and recruit and activate caspase-1, the cysteine protease that cleaves numerous downstream targets, including pro-IL-1ß and pro-IL-18 into their biologically active form. In this study, we sought to develop a biosensor that would allow us to monitor the initiation, progression, and resolution of inflammation in living animals. To this end, we inserted a known caspase-1 target sequence into a circularly permuted luciferase construct that becomes bioluminescent upon protease cleavage. This biosensor was activated in response to various inflammatory stimuli in human monocytic cell lines and murine bone marrow-derived macrophages. Next, we generated C57BL/6 transgenic mice constitutively expressing the caspase-1 biosensor. We were able to monitor the spatiotemporal dynamics of caspase-1 activation and onset of inflammation in individual animals in the context of a systemic bacterial infection, colitis, and acute graft-versus-host disease. These data established a model whereby the development and progression of inflammatory responses can be monitored in the context of these and other mouse models of disease.


Assuntos
Técnicas Biossensoriais/métodos , Caspase 1/análise , Inflamação/etiologia , Animais , Apoptose , Colite/enzimologia , Progressão da Doença , Doença Enxerto-Hospedeiro/enzimologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/enzimologia , Células THP-1
6.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068426

RESUMO

TRIM5α is an antiviral restriction factor that inhibits retroviral infection in a species-specific fashion. TRIM5α binds to and forms assemblies around the retroviral capsid. Following binding, poorly understood, ubiquitin-dependent events lead to the disassembly of the viral core, prior to the accumulation of viral reverse transcription products in the target cell. It is also known that assemblies of TRIM5α and other TRIM family proteins can be targets of autophagic degradation. The goal of this study was to define the role of specific ubiquitin linkages in the retroviral restriction and autophagic degradation of TRIM5α and delineate any connection between these two processes. To this end, we generated fusion proteins in which the catalytic domains of different deubiquitinase (DUB) enzymes, with different specificities for polyubiquitinated linkages, were fused to the N-terminal RING domain of Rhesus macaque TRIM5α. We assessed the role of ubiquitination in restriction and the degree to which specific types of ubiquitination are required for the association of TRIM5α with autophagic proteins. We determined that K63-linked ubiquitination by TRIM5α is required to induce capsid disassembly and to inhibit reverse transcription of HIV, while the ability to inhibit HIV-1 infection was not dependent on K63-linked ubiquitination. We also observed that K63-linked ubiquitination is required for the association of TRIM5α with autophagosomal membranes and the autophagic adapter protein p62.IMPORTANCE Although the mechanisms by which TRIM5α can induce the abortive disassembly of retroviral capsids have remained obscure, numerous studies have suggested a role for ubiquitination and cellular degradative pathways. These studies have typically relied on global perturbation of cellular degradative pathways. Here, through the use of linkage-specific deubiquitinating enzymes tethered to TRIM5α, we delineate the ubiquitin linkages which drive specific steps in restriction and degradation by TRIM5α, providing evidence for a noncanonical role for K63-linked ubiquitin in the process of retroviral restriction by TRIM5α and potentially providing insight into the mechanism of action of other TRIM family proteins.


Assuntos
Capsídeo/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Poliubiquitina/metabolismo , Transcrição Reversa , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Animais , Autofagossomos/metabolismo , Autofagossomos/virologia , Células HEK293 , Infecções por HIV/genética , HIV-1/genética , Células HeLa , Humanos , Macaca mulatta , Poliubiquitina/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
7.
Proc Natl Acad Sci U S A ; 114(50): E10707-E10716, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180435

RESUMO

Numerous viruses, including HIV-1, exploit the microtubule network to traffic toward the nucleus during infection. Although numerous studies have observed a role for the minus-end microtubule motor dynein in HIV-1 infection, the mechanism by which the viral core containing the viral genome associates with dynein and induces its perinuclear trafficking has remained unclear. Here, we report that the dynein adapter protein bicaudal D2 (BICD2) is able to interact with HIV-1 viral cores in target cells. We also observe that BICD2 can bind in vitro-assembled capsid tubes through its CC3 domain. We observe that BICD2 facilitates infection by promoting the trafficking of viral cores to the nucleus, thereby promoting nuclear entry of the viral genome and infection. Finally, we observe that depletion of BICD2 in the monocytic cell line THP-1 results in an induction of IFN-stimulated genes in these cells. Collectively, these results identify a microtubule adapter protein critical for trafficking of HIV-1 in the cytoplasm of target cells and evasion of innate sensing mechanisms in macrophages.


Assuntos
Genoma Viral , Infecções por HIV/metabolismo , HIV-1/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Núcleo Celular/virologia , Citoplasma/virologia , Técnicas de Inativação de Genes , Células HEK293 , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/metabolismo , Células HeLa , Humanos , Macrófagos/imunologia , Proteínas Associadas aos Microtúbulos/genética , Internalização do Vírus , Replicação Viral , Desenvelopamento do Vírus
8.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899089

RESUMO

Recent studies show that human immunodeficiency virus type 1 (HIV-1) can utilize microtubules and their associated proteins to complete key postfusion steps during infection. These include associating with both dynein and kinesin motors, as well as proteins, which enhance infection by altering microtubule dynamics during infection. In this article, we will discuss findings on how dynein and kinesin motors, as well as other microtubule-associated proteins, influence HIV-1 trafficking, viral core uncoating, and nuclear import of the viral ribonucleoprotein (RNP).


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte Ativo do Núcleo Celular , Humanos , Proteínas Virais , Desenvelopamento do Vírus
9.
PLoS Pathog ; 13(10): e1006686, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29040325

RESUMO

Restriction factors are important components of intrinsic cellular defense mechanisms against viral pathogens. TRIM5α is a restriction factor that intercepts the incoming capsid cores of retroviruses such as HIV and provides an effective species-specific barrier to retroviral infection. The TRIM5α SPRY domain directly binds the capsid with only very weak, millimolar-level affinity, and productive capsid recognition therefore requires both TRIM5α dimerization and assembly of the dimers into a multivalent hexagonal lattice to promote avid binding. Here, we explore the important unresolved question of whether the SPRY domains are flexibly linked to the TRIM lattice or more precisely positioned to maximize avidity. Biochemical and biophysical experiments indicate that the linker segment connecting the SPRY domain to the coiled-coil domain adopts an α-helical fold, and that this helical portion mediates interactions between the two domains. Targeted mutations were generated to disrupt the putative packing interface without affecting dimerization or higher-order assembly, and we identified mutant proteins that were nevertheless deficient in capsid binding in vitro and restriction activity in cells. Our studies therefore support a model wherein substantial avidity gains during assembly-mediated capsid recognition by TRIM5α come in part from tailored spacing of tethered recognition domains.


Assuntos
Capsídeo/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Retroviridae/imunologia , Animais , Fatores de Restrição Antivirais , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
10.
PLoS Pathog ; 12(6): e1005700, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27327622

RESUMO

Following envelope mediated fusion, the HIV-1 core is released into the cytoplasm of the target cell and undergoes a series of trafficking and replicative steps that result in the nuclear import of the viral genome, which ultimately leads to the integration of the proviral DNA into the host cell genome. Previous studies have found that disruption of microtubules, or depletion of dynein or kinesin motors, perturb the normal uncoating and trafficking of the viral genome. Here, we show that the Kinesin-1 motor, KIF5B, induces a relocalization of the nuclear pore component Nup358 into the cytoplasm during HIV-1 infection. This relocalization of NUP358 is dependent on HIV-1 capsid, and NUP358 directly associates with viral cores following cytoplasmic translocation. This interaction between NUP358 and the HIV-1 core is dependent on multiple capsid binding surfaces, as this association is not observed following infection with capsid mutants in which a conserved hydrophobic binding pocket (N74D) or the cyclophilin A binding loop (P90A) is disrupted. KIF5B knockdown also prevents the nuclear entry and infection by HIV-1, but does not exert a similar effect on the N74D or P90A capsid mutants which do not rely on Nup358 for nuclear import. Finally, we observe that the relocalization of Nup358 in response to CA is dependent on cleavage protein and polyadenylation factor 6 (CPSF6), but independent of cyclophilin A. Collectively, these observations identify a previously unappreciated role for KIF5B in mediating the Nup358 dependent nuclear import of the viral genome during infection.


Assuntos
Núcleo Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/patogenicidade , Cinesinas/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Western Blotting , Núcleo Celular/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real
11.
J Biol Chem ; 291(9): 4374-85, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26719332

RESUMO

Although trace levels of phosphorylated α-synuclein (α-syn) are detectable in normal brains, nearly all α-syn accumulated within Lewy bodies in Parkinson disease brains is phosphorylated on serine 129 (Ser-129). The role of the phosphoserine residue and its effects on α-syn structure, function, and intracellular accumulation are poorly understood. Here, co-expression of α-syn and polo-like kinase 2 (PLK2), a kinase that targets Ser-129, was used to generate phosphorylated α-syn for biophysical and biological characterization. Misfolding and fibril formation of phosphorylated α-syn isoforms were detected earlier, although the fibrils remained phosphatase- and protease-sensitive. Membrane binding of α-syn monomers was differentially affected by phosphorylation depending on the Parkinson disease-linked mutation. WT α-syn binding to presynaptic membranes was not affected by phosphorylation, whereas A30P α-syn binding was greatly increased, and A53T α-syn was slightly lower, implicating distal effects of the carboxyl- on amino-terminal membrane binding. Endocytic vesicle-mediated internalization of pre-formed fibrils into non-neuronal cells and dopaminergic neurons matched the efficacy of α-syn membrane binding. Finally, the disruption of internalized vesicle membranes was enhanced by the phosphorylated α-syn isoforms, a potential means for misfolded extracellular or lumenal α-syn to access cytosolic α-syn. Our results suggest that the threshold for vesicle permeabilization is evident even at low levels of α-syn internalization and are relevant to therapeutic strategies to reduce intercellular propagation of α-syn misfolding.


Assuntos
Endocitose , Doença de Parkinson/genética , Agregação Patológica de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Sinaptossomos/metabolismo , alfa-Sinucleína/metabolismo , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Linhagem Celular , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Mutação , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Sinaptossomos/patologia , alfa-Sinucleína/química , alfa-Sinucleína/genética
12.
J Virol ; 90(7): 3400-10, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764007

RESUMO

UNLABELLED: TRIM5α is an interferon-inducible retroviral restriction factor that prevents infection by inducing the abortive disassembly of capsid cores recognized by its C-terminal PRY/SPRY domain. The mechanism by which TRIM5α mediates the disassembly of viral cores is poorly understood. Previous studies demonstrated that proteasome inhibitors abrogate the ability of TRIM5α to induce premature core disassembly and prevent reverse transcription; however, viral infection is still inhibited, indicating that the proteasome is partially involved in the restriction process. Alternatively, we and others have observed that TRIM5α associates with proteins involved in autophagic degradation pathways, and one recent study found that autophagic degradation is required for the restriction of retroviruses by TRIM5α. Here, we show that TRIM5α is basally degraded via autophagy in the absence of restriction-sensitive virus. We observe that the autophagy markers LC3b and lysosome-associated membrane protein 2A (LAMP2A) localize to a subset of TRIM5α cytoplasmic bodies, and inhibition of lysosomal degradation with bafilomycin A1 increases this association. To test the requirement for macroautophagy in restriction, we examined the ability of TRIM5α to restrict retroviral infection in cells depleted of the autophagic mediators ATG5, Beclin1, and p62. In all cases, restriction of retroviruses by human TRIM5α, rhesus macaque TRIM5α, and owl monkey TRIM-Cyp remained potent in cells depleted of these autophagic effectors by small interfering RNA (siRNA) knockdown or clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing. Collectively, these results are consistent with observations that the turnover of TRIM5α proteins is sensitive to autophagy inhibition; however, the data presented here do not support observations that the inhibition of autophagy abrogates retroviral restriction by TRIM5 proteins. IMPORTANCE: Restriction factors are a class of proteins that inhibit viral replication. Following fusion of a retrovirus with a host cell membrane, the retroviral capsid is released into the cytoplasm of the target cell. TRIM5α inhibits retroviral infection by promoting the abortive disassembly of incoming retroviral capsid cores; as a result, the retroviral genome is unable to traffic to the nucleus, and the viral life cycle is extinguished. In the process of restriction, TRIM5α itself is degraded by the proteasome. However, in the present study, we have shown that in the absence of a restriction-sensitive virus, TRIM5α is degraded by both proteasomal and autophagic degradation pathways. Notably, we observed that restriction of retroviruses by TRIM5α does not require autophagic machinery. These data indicate that the effector functions of TRIM5α can be separated from its degradation and may have further implications for understanding the mechanisms of other TRIM family members.


Assuntos
Autofagia/genética , Proteínas de Transporte/metabolismo , Infecções por Retroviridae/virologia , Retroviridae/crescimento & desenvolvimento , Proteínas do Core Viral/metabolismo , Replicação Viral/genética , Animais , Fatores de Restrição Antivirais , Aotidae , Proteínas Reguladoras de Apoptose/genética , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Macaca mulatta , Macrolídeos/farmacologia , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Retroviridae/genética , Infecções por Retroviridae/imunologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
13.
J Virol ; 90(4): 1849-57, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26676782

RESUMO

UNLABELLED: Rhesus macaque TRIM5α (rhTRIM5α) is a retroviral restriction factor that inhibits HIV-1 infection. Previous studies have revealed that TRIM5α restriction occurs via a two-step process. The first step is restriction factor binding, which is sufficient to inhibit infection. The second step, which is sensitive to proteasome inhibition, prevents the accumulation of reverse transcription products in the target cell. However, because of the pleotropic effects of proteasome inhibitors, the molecular mechanisms underlying the individual steps in the restriction process have remained poorly understood. In this study, we have fused the small catalytic domain of herpes simplex virus UL36 deubiquitinase (DUb) to the N-terminal RING domain of rhTRIM5α, which results in a ubiquitination-resistant protein. Cell lines stably expressing this fusion protein inhibited HIV-1 infection to the same degree as a control fusion to a catalytically inactive DUb. However, reverse transcription products were substantially increased in the DUb-TRIM5α fusion relative to the catalytically inactive control or the wild-type (WT) TRIM5α. Similarly, expression of DUb-rhTRIM5α resulted in the accumulation of viral cores in target cells following infection, while the catalytically inactive control and WT rhTRIM5α induced the abortive disassembly of viral cores, indicating a role for ubiquitin conjugation in rhTRIM5α-mediated destabilization of HIV-1 cores. Finally, DUb-rhTRIM5α failed to activate NF-κB signaling pathways compared to controls, demonstrating that this ubiquitination-dependent activity is separable from the ability to restrict retroviral infection. IMPORTANCE: These studies provide direct evidence that ubiquitin conjugation to rhTRIM5α-containing complexes is required for the second step of HIV-1 restriction. They also provide a novel tool by which the biological activities of TRIM family proteins might be dissected to better understand their function and underlying mechanisms of action.


Assuntos
HIV-1/imunologia , HIV-1/fisiologia , Proteínas/metabolismo , Transcrição Reversa , Ubiquitina/metabolismo , Montagem de Vírus , Animais , Capsídeo/metabolismo , Linhagem Celular , Humanos , Macaca mulatta , Ubiquitina-Proteína Ligases
14.
Acta Neuropathol ; 134(4): 629-653, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28527044

RESUMO

Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Transporte Biológico/fisiologia , Vesículas Transportadoras/metabolismo , Animais , Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Feminino , Fluoresceínas , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Masculino , Neurônios/metabolismo , Neurônios/ultraestrutura , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosfatidilgliceróis , Ratos , Vesículas Transportadoras/ultraestrutura , Lipossomas Unilamelares , alfa-Sinucleína/metabolismo
15.
Biochim Biophys Acta ; 1843(5): 945-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24491810

RESUMO

MEK Kinase 2 (MEKK2) is a serine/threonine kinase that functions as a MAPK kinase kinase (MAP3K) to regulate activation of Mitogen-activated Protein Kinases (MAPKs). We recently have demonstrated that ablation of MEKK2 expression in invasive breast tumor cells dramatically inhibits xenograft metastasis, but the mechanism by which MEKK2 influences metastasis-related tumor cell function is unknown. In this study, we investigate MEKK2 function and demonstrate that silencing MEKK2 expression in breast tumor cell significantly enhances cell spread area and focal adhesion stability while reducing cell migration. We show that cell attachment to the matrix proteins fibronectin or Matrigel induces MEKK2 activation and localization to focal adhesions. Further, we reveal that MEKK2 ablation enhances focal adhesion size and frequency, thereby linking MEKK2 function to focal adhesion stability. Finally, we show that MEKK2 knockdown inhibits fibronectin-induced Extracellular Signal-Regulated Kinase 5 (ERK5) signaling and Focal Adhesion Kinase (FAK) autophosphorylation. Taken together, our results strongly support a role for MEKK2 as a regulator of signaling that modulates breast tumor cell spread area and migration through control of focal adhesion stability.


Assuntos
Neoplasias da Mama/patologia , Adesões Focais/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Invasividade Neoplásica , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Fibronectinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Inativação Gênica , Humanos , MAP Quinase Quinase Quinase 2 , MAP Quinase Quinase Quinases/genética , Fosforilação
16.
J Virol ; 88(23): 13613-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231297

RESUMO

UNLABELLED: Following entry into the target cell, human immunodeficiency virus type 1 (HIV-1) must reverse transcribe its RNA genome to DNA and traffic to the nuclear envelope, where the viral genome is translocated into the nucleus for subsequent integration into the host cell chromosome. During this time, the viral core, which houses the genome, undergoes a poorly understood process of disassembly, known as uncoating. Collectively, many studies suggest that uncoating is tightly regulated to allow nuclear import of the genome while minimizing the exposure of the newly synthesized DNA to cytosolic DNA sensors. However, whether host cellular proteins facilitate this process remains poorly understood. Here we report that intact microtubules facilitate HIV-1 uncoating in target cells. Disruption of microtubules with nocodazole substantially delays HIV-1 uncoating, as revealed with three different assay systems. This defect in uncoating did not correlate with defective reverse transcription at early times postinfection, demonstrating that microtubule-facilitated uncoating is distinct from the previously reported role of viral reverse transcription in the uncoating process. We also find that pharmacological or small interfering RNA (siRNA)-mediated inhibition of cytoplasmic dynein or the kinesin 1 heavy chain KIF5B delays uncoating, providing detailed insight into how microtubules facilitate the uncoating process. These studies reveal a previously unappreciated role for microtubules and microtubule motor function in HIV-1 uncoating, establishing a functional link between viral trafficking and uncoating. Targeted disruption of the capsid motor interaction may reveal novel mechanisms of inhibition of viral infection or provide opportunities to activate cytoplasmic antiviral responses directed against capsid or viral DNA. IMPORTANCE: During HIV-1 infection, fusion of viral and target cell membranes dispenses the viral ribonucleoprotein complex into the cytoplasm of target cells. During this time, the virus must reverse transcribe its RNA genome, traffic from the location of fusion to the nuclear membrane, and undergo the process of uncoating, whereby the viral capsid core disassembles to allow the subsequent nuclear import of the viral genome. Numerous cellular restriction factors target the viral capsid, suggesting that perturbation of the uncoating process represents an excellent antiviral target. However, this uncoating process, and the cellular factors that facilitate uncoating, remains poorly understood. The main observation of this study is that normal uncoating requires intact microtubules and is facilitated by dynein and kinesin motors. Targeting these factors may either directly inhibit infection or delay it enough to trigger mediators of intrinsic immunity that recognize cytoplasmic capsid or DNA and subsequently induce an antiviral state in these cells.


Assuntos
Dineínas/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Cinesinas/metabolismo , Desenvelopamento do Vírus , Animais , Linhagem Celular , Humanos
17.
J Virol ; 88(16): 8911-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872590

RESUMO

UNLABELLED: TRIM5α proteins are a potent barrier to the cross-species transmission of retroviruses. TRIM5α proteins exhibit an ability to self-associate at many levels, ultimately leading to the formation of protein assemblies with hexagonal symmetry in vitro and cytoplasmic assemblies when expressed in cells. However, the role of these assemblies in restriction, the determinants that mediate their formation, and the organization of TRIM5α molecules within these assemblies have remained unclear. Here we show that α-helical elements within the Linker2 region of rhesus macaque TRIM5α govern the ability to form cytoplasmic assemblies in cells and restrict HIV-1 infection. Mutations that reduce α-helix formation by the Linker2 region disrupt assembly and restriction. More importantly, mutations that enhance the α-helical content of the Linker2 region, relative to the wild-type protein, also exhibit an increased ability to form cytoplasmic assemblies and restrict HIV-1 infection. Molecular modeling of the TRIM5α dimer suggests a model in which α-helical elements within the Linker2 region dock to α-helices of the coiled-coil domain, likely establishing proper orientation and spacing of protein domains necessary for assembly and restriction. Collectively, these studies provide critical insight into the determinants governing TRIM5α assembly and restriction and demonstrate that the antiviral potency of TRIM5α proteins can be significantly increased without altering the affinity of SPRY/capsid binding. IMPORTANCE: Many members of the tripartite motif (TRIM) family of proteins act as restriction factors that directly inhibit viral infection and activate innate immune signaling pathways. Another common feature of TRIM proteins is the ability to form protein assemblies in the nucleus or the cytoplasm. However, the determinants in TRIM proteins required for assembly and the degree to which assembly affects TRIM protein function have been poorly understood. Here we show that alpha helices in the Linker2 (L2) region of rhesus TRIM5α govern assembly and restriction of HIV-1 infection. Helix-disrupting mutations disrupt the assembly and restriction of HIV-1, while helix-stabilizing mutations enhance assembly and restriction relative to the wild-type protein. Circular dichroism analysis suggests that that the formation of this helical structure is supported by intermolecular interactions with the coiled-coil (CC) domain in the CCL2 dimer. These studies reveal a novel mechanism by which the antiviral activity of TRIM5α proteins can be regulated and provide detailed insight into the assembly determinants of TRIM family proteins.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , HIV-1/genética , HIV-1/metabolismo , Estrutura Secundária de Proteína/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Macaca mulatta/genética , Macaca mulatta/microbiologia , Macaca mulatta/virologia , Mutação/genética
18.
Retrovirology ; 11: 68, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25123063

RESUMO

BACKGROUND: The IFN-α-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Genetic evidence suggested that capsid is the viral determinant for restriction by MxB. This work explores the ability of MxB to bind to the HIV-1 core, and the role of capsid-binding in restriction. RESULTS: We showed that MxB binds to the HIV-1 core and that this interaction leads to inhibition of the uncoating process of HIV-1. These results identify MxB as an endogenously expressed protein with the ability to inhibit HIV-1 uncoating. In addition, we found that a benzimidazole-based compound known to have a binding pocket on the surface of the HIV-1 capsid prevents the binding of MxB to capsid. The use of this small-molecule identified the MxB binding region on the surface of the HIV-1 core. Domain mapping experiments revealed the following requirements for restriction: 1) MxB binding to the HIV-1 capsid, which requires the 20 N-terminal amino acids, and 2) oligomerization of MxB, which is mediated by the C-terminal domain provides the avidity for the interaction of MxB with the HIV-1 core. CONCLUSIONS: Overall our work establishes that MxB binds to the HIV-1 core and inhibits the uncoating process of HIV-1. Moreover, we demonstrated that HIV-1 restriction by MxB requires capsid binding and oligomerization.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas do Core Viral/metabolismo , Capsídeo/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Ligação Proteica , Células U937
19.
Methods Mol Biol ; 2807: 141-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743226

RESUMO

To integrate with host chromatin and establish a productive infection, HIV-1 must translocate the viral Ribonucleoprotein (RNP) complex through the nuclear pore complex (NPC). Current assay to measure HIV-1 nuclear import relies on a transient byproduct of HIV-1 integration failure called 2-LTR circles. However, 2-LTR circles require complete or near-complete reverse transcription and association with the non-homologous end joining (NHEJ) machinery in the nucleus, which can complicate interpretation of 2-LTR circle formation as a measure of nuclear import kinetics. Here, we describe an approach to measure nuclear import of infectious HIV-1 particles. This involves chemically induced dimerization of Nup62, a central FG containing nucleoporin. Using this technique, nuclear import of infectious particles can be monitored in both primary and cell culture models. In response to host factor depletion or restriction factors, changes in HIV-1 nuclear import can be effectively measured using the nuclear import kinetics (NIK) assay.


Assuntos
Transporte Ativo do Núcleo Celular , HIV-1 , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Cinética , Núcleo Celular/metabolismo , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Integração Viral
20.
Retrovirology ; 10: 10, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23369348

RESUMO

BACKGROUND: TRIM5α is a member of the tripartite motif family of proteins that restricts retroviral infection in a species-specific manner. The restriction requires an interaction between the viral capsid lattice and the B30.2/SPRY domain of TRIM5α. Previously, we determined that two SUMO interacting motifs (SIMs) present in the B30.2/SPRY domain of human TRIM5α (huTRIM5α) were important for the restriction of N-tropic Murine Leukemia Virus. Here, we examined whether SUMO expression and the SIM1 and SIM2 motifs in rhesus monkey TRIM5α (rhTRIM5α) are similarly important for Human Immunodeficiency Type 1 (HIV-) restriction. RESULTS: We found that mutation of SIM1 and SIM2 of rhTRIM5α abolished the restriction of HIV-1 virus. Further, knockdown of SUMO-1 in rhTRIM5α expressing cells abolished restriction of HIV-1. These results may be due, in part, to the ability of SUMO-1 to stabilize rhTRIM5α protein expression, as SUMO-1 knockdown increased rhTRIM5α turnover and the mutations in SIM1 and SIM2 led to more rapid degradation than the wild type protein. The NF-κB signaling ability of rhTRIM5α was also attenuated by SUMO-1 knockdown. Finally, upon inhibition of CRM1-dependent nuclear export with Leptomycin B (LMB), wild type rhTRIM5α localized to SUMO-1 bodies in the nucleus, while the SIM1 and SIM2 mutants did not localize to SUMO-1. CONCLUSIONS: Our results suggest that the rhTRIM5α B30.2/SPRY domain is not only important for the recognition of the HIV-1 CA, but it is also important for its association with SUMO-1 or SUMO-1 modified proteins. These interactions help to maintain TRIM5α protein levels and its nuclear localization into specific nuclear bodies.


Assuntos
HIV-1/imunologia , Proteínas/imunologia , Proteínas/metabolismo , Proteína SUMO-1/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Técnicas de Silenciamento de Genes , Humanos , NF-kappa B/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Proteína SUMO-1/genética , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA