RESUMO
Malaria is preventable, but the burden of disease remains high with over 249 million cases and 608,000 deaths reported in 2022. Historically, the most important protective interventions have been vector control and chemopreventive medicines with over 50 million children receiving seasonal malaria chemoprevention in the year 2023. Two vaccines are approved and starting to be deployed, bringing additional protection for children up to 36 months. However, the impact of these currently available tools is somewhat limited on various fronts. Vaccines exhibit partial efficacy, are relatively costly, and not accessible in all settings. The challenges encountered with chemoprevention are barriers to acceptability and feasibility, including frequency of dosing, and the lack of options in the first trimester of pregnancy and for women living with HIV. Also, the emergence of resistance against chemopreventive medicines is concerning. To address these limitations, a target product profile (TPP) is proposed as a road map to guide innovation and to boost the quest for novel chemopreventive alternatives. This TPP describes the ideal product attributes, while acknowledging potential trade-offs that may be needed. Critically, it considers the target populations most at risk; primarily infants, children, and pregnant women. Malaria control and elimination requires appropriate chemoprevention, not only in areas of high endemicity and transmission, but also in lower transmission areas where immunity is declining, as well as for travellers from areas where malaria has been eliminated. New medicines should show acceptable safety and tolerability, with high and long protective efficacy. Formulations and costs need to support operational adherence, access, and effectiveness. Next generation long-acting oral and injectable drugs are likely to constitute the backbone of malaria prevention. Therefore, the perspectives of front-line experts in malaria prevention, researchers, and those involved in drug development are captured in the TPP. This inclusive approach aims at concentrating efforts and aligning responses across the community to develop new and transformative medicines.
Assuntos
Antimaláricos , Quimioprevenção , Malária , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Malária/prevenção & controle , Quimioprevenção/métodos , Humanos , Administração Oral , Injeções , Feminino , GravidezRESUMO
The IUPHAR/BPS Guide to PHARMACOLOGY (www.guidetopharmacology.org) is an open-access, expert-curated database of molecular interactions between ligands and their targets. We describe significant updates made over the seven releases during the last two years. The database is notably enhanced through the continued linking of relevant pharmacology with key immunological data types as part of the IUPHAR Guide to IMMUNOPHARMACOLOGY (www.guidetoimmunopharmacology.org) and by a major new extension, the IUPHAR/MMV Guide to Malaria PHARMACOLOGY (www.guidetomalariapharmacology.org). The latter has been constructed in partnership with the Medicines for Malaria Venture, an organization dedicated to identifying, developing and delivering new antimalarial therapies that are both effective and affordable. This is in response to the global challenge of over 200 million cases of malaria and 400 000 deaths worldwide, with the majority in the WHO Africa Region. It provides new pharmacological content, including molecular targets in the malaria parasite, interaction data for ligands with antimalarial activity, and establishes curation of data from screening assays, used routinely in antimalarial drug discovery, against the whole organism. A dedicated portal has been developed to provide quick and focused access to these new data.
Assuntos
Antimaláricos/farmacologia , Bases de Dados Factuais , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Farmacologia , Antimaláricos/uso terapêutico , Humanos , Ligantes , Malária/tratamento farmacológico , Malária/parasitologia , Terapia de Alvo Molecular , Plasmodium/efeitos dos fármacos , Software , Interface Usuário-Computador , NavegadorRESUMO
OBJECTIVES: To evaluate Plasmodium malariae susceptibility to current and lead candidate antimalarial drugs. METHODS: We conducted cross-sectional screening and detection of all Plasmodium species malaria cases, which were nested within a longitudinal prospective study, and an ex vivo assessment of efficacy of a panel of antimalarials against P. malariae and Plasmodium falciparum, both PCR-confirmed mono-infections. Reference compounds tested included chloroquine, lumefantrine, artemether and piperaquine, while candidate antimalarials included the imidazolopiperazine GNF179, a close analogue of KAF156, and the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. RESULTS: We report a high frequency (3%-15%) of P. malariae infections with a significant reduction in ex vivo susceptibility to chloroquine, lumefantrine and artemether, which are the current frontline drugs against P. malariae infections. Unlike these compounds, potent inhibition of P. malariae and P. falciparum was observed with piperaquine exposure. Furthermore, we evaluated advanced lead antimalarial compounds. In this regard, we identified strong inhibition of P. malariae using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drug currently in clinical Phase IIb testing. Finally, in addition to GNF179, we demonstrated that the Plasmodium PI4K-specific inhibitor KDU691 is highly inhibitory against P. malariae and P. falciparum. CONCLUSIONS: Our data indicated that chloroquine, lumefantrine and artemether may not be suitable for the treatment of P. malariae infections and the potential of piperaquine, as well as new antimalarials imidazolopiperazines and PI4K-specific inhibitor, for P. malariae cure.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Estudos Transversais , Humanos , Malária Falciparum/tratamento farmacológico , Mali , Plasmodium falciparum , Plasmodium malariae , Estudos ProspectivosRESUMO
There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.
Assuntos
Antimaláricos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Malária/parasitologia , Plasmodium/efeitos dos fármacos , Plasmodium/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Descoberta de Drogas , Feminino , Estágios do Ciclo de Vida/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/parasitologia , Malária/tratamento farmacológico , Masculino , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/antagonistas & inibidores , Fator 2 de Elongação de Peptídeos/metabolismo , Plasmodium/genética , Plasmodium/crescimento & desenvolvimento , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/metabolismo , Quinolinas/administração & dosagem , Quinolinas/química , Quinolinas/farmacocinéticaRESUMO
BACKGROUND: Emergence of anti-malarial drug resistance and perpetual increase in malaria incidence necessitates the development of novel anti-malarials. Histone deacetylases (HDAC) has been shown to be a promising target for malaria, despite this, there are no HDAC inhibitors in clinical trials for malaria treatment. This can be attributed to the poor pharmacokinetics, bioavailability and selectivity of the HDAC inhibitors. METHODS: A collection of HDAC inhibitors were screened for anti-malarial activity, and the best candidate was profiled in parasite-killing kinetics, growth inhibition of sensitive and multi-drug resistant (MDR) strains and against gametocytes. Absorption, distribution, metabolism and excretion pharmacokinetics (ADME-PK) parameters of FNDR-20123 were determined, and in vivo efficacy was studied in a mouse model for Plasmodium falciparum infection. RESULTS: A compound library of HDAC inhibitors (180 in number) was screened for anti-malarial activity, of which FNDR-20123 was the most potent candidate. The compound had been shown to inhibit Plasmodium HDAC with IC50 of 31 nM and human HDAC with IC50 of 3 nM. The IC50 obtained for P. falciparum in asexual blood-stage assay was 42 nM. When compared to atovaquone and pyrimethamine, the killing profiles of FNDR-20123 were better than atovaquone and comparable to pyrimethamine. The IC50 values for the growth inhibition of sensitive and MDR strains were similar, indicating that there is no cross-resistance and a low risk of resistance development. The selected compound was also active against gametocytes, indicating a potential for transmission control: IC50 values being 190 nM for male and > 5 µM for female gametocytes. FNDR-20123 is a stable candidate in human/mouse/rat liver microsomes (> 75% remaining post 2-h incubation), exhibits low plasma protein binding (57% in humans) with no human Ether-à-go-go-Related Gene (hERG) liability (> 100 µM), and does not inhibit any of the cytochrome P450 (CYP) isoforms tested (IC50 > 25 µM). It also shows negligible cytotoxicity to HepG-2 and THP-1 cell lines. The oral pharmacokinetics in rats at 100 mg/kg body weight shows good exposures (Cmax = 1.1 µM) and half-life (T1/2 = 5.5 h). Furthermore, a 14-day toxicokinetic study at 100 mg/kg daily dose did not show any abnormality in body weight or gross organ pathology. FNDR-20123 is also able to reduce parasitaemia significantly in a mouse model for P. falciparum infection when dosed orally and subcutaneously. CONCLUSION: FNDR-20123 may be a suitable candidate for the treatment of malaria, which can be further developed.
Assuntos
Antimaláricos/farmacocinética , Inibidores de Histona Desacetilases/farmacocinética , Malária Falciparum/tratamento farmacológico , Absorção Fisiológica , Animais , Eliminação Intestinal , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Eliminação RenalRESUMO
BACKGROUND: Vivax malaria is associated with significant morbidity and economic loss, and constitutes the bulk of malaria cases in large parts of Asia and South America as well as recent case reports in Africa. The widespread prevalence of vivax is a challenge to global malaria elimination programmes. Vivax malaria control is particularly challenged by existence of dormant liver stage forms that are difficult to treat and are responsible for multiple relapses, growing drug resistance to the asexual blood stages and host-genetic factors that preclude use of specific drugs like primaquine capable of targeting Plasmodium vivax liver stages. Despite an obligatory liver-stage in the Plasmodium life cycle, both the difficulty in obtaining P. vivax sporozoites and the limited availability of robust host cell models permissive to P. vivax infection are responsible for the limited knowledge of hypnozoite formation biology and relapse mechanisms, as well as the limited capability to do drug screening. Although India accounts for about half of vivax malaria cases world-wide, very little is known about the vivax liver stage forms in the context of Indian clinical isolates. METHODS: To address this, methods were established to obtain infective P. vivax sporozoites from an endemic region in India and multiple assay platforms set up to detect and characterize vivax liver stage forms. Different hepatoma cell lines, including the widely used HCO4 cells, primary human hepatocytes as well as hepatocytes obtained from iPSC's generated from vivax patients and healthy donors were tested for infectivity with P. vivax sporozoites. RESULTS: Both large and small forms of vivax liver stage are detected in these assays, although the infectivity obtained in these platforms are low. CONCLUSIONS: This study provides a proof of concept for detecting liver stage P. vivax and provide the first characterization of P. vivax liver stage forms from an endemic region in India.
Assuntos
Estágios do Ciclo de Vida , Fígado/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax/crescimento & desenvolvimento , Índia , Plasmodium vivax/isolamento & purificaçãoRESUMO
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Assuntos
Antiparasitários/farmacologia , Parasitos/efeitos dos fármacos , Animais , Descoberta de Drogas , Humanos , Doenças Negligenciadas/parasitologiaRESUMO
A series of aryl carboxamide and benzylamino dispiro 1,2,4,5-tetraoxane analogues have been designed and synthesized in a short synthetic sequence from readily available starting materials. From this series of endoperoxides, molecules with in vitro IC50s versus Plasmodium falciparum (3D7) as low as 0.84â¯nM were identified. Based on an assessment of blood stability and in vitro microsomal stability, N205 (10a) was selected for rodent pharmacokinetic and in vivo antimalarial efficacy studies in the mouse Plasmodium berghei and Plasmodium falciparum Pf3D70087/N9 severe combined immunodeficiency (SCID) mouse models. The results indicate that the 4-benzylamino derivatives have excellent profiles with a representative of this series, N205, an excellent starting point for further lead optimization studies.
Assuntos
Antimaláricos/uso terapêutico , Malária , Morfolinas/síntese química , Plasmodium falciparum , Tetraoxanos/síntese química , Administração Oral , Animais , Antimaláricos/síntese química , Antimaláricos/química , Modelos Animais de Doenças , Estabilidade de Medicamentos , Humanos , Concentração Inibidora 50 , Malária/tratamento farmacológico , Camundongos , Morfolinas/química , Morfolinas/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Ratos , Tetraoxanos/química , Tetraoxanos/uso terapêuticoRESUMO
BACKGROUND: Recently published data suggest that artemisinin derivatives and synthetic peroxides, such as the ozonides OZ277 and OZ439, have a similar mode of action. Here the cross-resistance of OZ277 and OZ439 and four additional next-generation ozonides was probed against the artemisinin-resistant clinical isolate Plasmodium falciparum Cam3.I, which carries the K13-propeller mutation R539T (Cam3.IR539T). METHODS: The previously described in vitro ring-stage survival assay (RSA0-3h) was employed and a simplified variation of the original protocol was developed. RESULTS: At the pharmacologically relevant concentration of 700 nM, all six ozonides were highly effective against the dihydroartemisinin-resistant P. falciparum Cam3.IR539T parasites, showing a per cent survival ranging from <0.01 to 1.83%. A simplified version of the original RSA0-3h method was developed and gave similar results, thus providing a practical drug discovery tool for further optimization of next-generation anti-malarial peroxides. CONCLUSION: The absence of in vitro cross-resistance against the artemisinin-resistant clinical isolate Cam3.IR539T suggests that ozonides could be effective against artemisinin-resistant P. falciparum. How this will translate to the human situation in clinical settings remains to be investigated.
Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Adamantano/análogos & derivados , Adamantano/farmacologia , Compostos Heterocíclicos com 1 Anel/farmacologia , Peróxidos/farmacologia , Compostos de Espiro/farmacologiaRESUMO
Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd) are at risk for developing hemolytic anemia when given the antimalarial drug primaquine (PQ). The WHO Evidence Review Group released a report suggesting that mass administration of a single dose of PQ at 0.25 mg of base/kg of body weight (mpk) (mouse equivalent of 3.125 mpk) could potentially reduce malaria transmission based on its gametocytocidal activity and could be safely administered to G6PD-deficient individuals, but there are limited safety data available confirming the optimum single dose of PQ. A single-dose administration of PQ was therefore assessed in our huRBC-SCID mouse model used to predict hemolytic toxicity with respect to G6PD deficiency. In this model, nonobese diabetic (NOD)/SCID mice are engrafted with human red blood cells (huRBC) from donors with the African or Mediterranean variant of G6PDd (A-G6PDd or Med-G6PDd, respectively) and demonstrate dose-dependent sensitivity to PQ. In mice engrafted with A-G6PD-deficient huRBC, single-dose PQ at 3.125, 6.25, or 12.5 mpk had no significant loss of huRBC compared to the vehicle control group. In contrast, in mice engrafted with Med-G6PDd huRBC, a single dose of PQ at 3.125, 6.25, or 12.5 mpk resulted in a significant, dose-dependent loss of huRBC compared to the value for the vehicle control group. Our data suggest that administration of a single low dose of 0.25 mpk of PQ could induce hemolytic anemia in Med-G6PDd individuals but that use of single-dose PQ at 0.25 mpk as a gametocytocidal drug to block transmission would be safe in areas where A-G6PDd predominates.
Assuntos
Antimaláricos/administração & dosagem , Deficiência de Glucosefosfato Desidrogenase/parasitologia , Malária/transmissão , Primaquina/administração & dosagem , Animais , Antimaláricos/farmacocinética , Modelos Animais de Doenças , Transfusão de Eritrócitos , Eritrócitos/efeitos dos fármacos , Humanos , Camundongos SCID , Primaquina/análogos & derivados , Primaquina/farmacocinéticaRESUMO
Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations.
Assuntos
Anemia Hemolítica/diagnóstico , Transfusão de Eritrócitos/métodos , Deficiência de Glucosefosfato Desidrogenase/terapia , Primaquina/uso terapêutico , Aminoquinolinas/efeitos adversos , Aminoquinolinas/uso terapêutico , Anemia Hemolítica/sangue , Anemia Hemolítica/induzido quimicamente , Animais , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Cloroquina/efeitos adversos , Cloroquina/uso terapêutico , Terapia Combinada , Dapsona/efeitos adversos , Dapsona/uso terapêutico , Relação Dose-Resposta a Droga , Doxiciclina/efeitos adversos , Doxiciclina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Contagem de Eritrócitos , Feminino , Deficiência de Glucosefosfato Desidrogenase/sangue , Humanos , Mefloquina/efeitos adversos , Mefloquina/uso terapêutico , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Primaquina/efeitos adversos , Pirimetamina/efeitos adversos , Pirimetamina/uso terapêutico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transplante HeterólogoRESUMO
The 4-aminoquinoline naphthoquine (NQ) and the thiazine dye methylene blue (MB) have potent in vitro efficacies against Plasmodium falciparum, but susceptibility data for P. vivax are limited. The species- and stage-specific ex vivo activities of NQ and MB were assessed using a modified schizont maturation assay on clinical field isolates from Papua, Indonesia, where multidrug-resistant P. falciparum and P. vivax are prevalent. Both compounds were highly active against P. falciparum (median [range] 50% inhibitory concentration [IC50]: NQ, 8.0 nM [2.6 to 71.8 nM]; and MB, 1.6 nM [0.2 to 7.0 nM]) and P. vivax (NQ, 7.8 nM [1.5 to 34.2 nM]; and MB, 1.2 nM [0.4 to 4.3 nM]). Stage-specific drug susceptibility assays revealed significantly greater IC50s in parasites exposed at the trophozoite stage than at the ring stage for NQ in P. falciparum (26.5 versus 5.1 nM, P = 0.021) and P. vivax (341.6 versus 6.5 nM, P = 0.021) and for MB in P. vivax (10.1 versus 1.6 nM, P = 0.010). The excellent ex vivo activities of NQ and MB against both P. falciparum and P. vivax highlight their potential utility for the treatment of multidrug-resistant malaria in areas where both species are endemic.
Assuntos
Antimaláricos/farmacologia , Azul de Metileno/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacosRESUMO
BACKGROUND: The emergence and spread of multidrug-resistant Plasmodium falciparum and Plasmodium vivax highlights the need for objective measures of ex vivo drug susceptibility. Flow cytometry (FC) has potential to provide a robust and rapid quantification of ex vivo parasite growth. METHODS: Field isolates from Papua, Indonesia, underwent ex vivo drug susceptibility testing against chloroquine, amodiaquine, piperaquine, mefloquine, and artesunate. A single nucleic acid stain (i.e., hydroethidine (HE) for P. falciparum and SYBR Green I (SG) for P. vivax) was used to quantify infected red blood cells by FC-based signal detection. Data derived by FC were compared to standard quantification by light microscopy (LM). A subset of isolates was used to compare single and double staining techniques. RESULTS: In total, 57 P. falciparum and 23 P. vivax field isolates were collected for ex vivo drug susceptibility testing. Reliable paired data between LM and FC was obtained for 88 % (295/334) of these assays. The median difference of derived IC50 values varied from -5.4 to 6.1 nM, associated with 0.83-1.23 fold change in IC50 values between LM and FC. In 15 assays (5.1 %), the derived difference of IC50 estimates was beyond the 95 % limits of agreement; in eleven assays (3.7 %), this was attributable to low parasite growth (final schizont count < 40 %), and in four assays (1.4 %) due to low initial parasitaemia at the start of assay (<2000 µl(-1)). In a subset of seven samples, LM, single and double staining FC techniques generated similar IC50 values. CONCLUSIONS: A single staining FC-based assay using a portable cytometer provides a simple, fast and versatile platform for field surveillance of ex vivo drug susceptibility in clinical P. falciparum and P. vivax isolates.
Assuntos
Antimaláricos/farmacologia , Citometria de Fluxo/métodos , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Eritrócitos/parasitologia , Feminino , Humanos , Indonésia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium vivax/crescimento & desenvolvimento , Coloração e Rotulagem/métodos , Adulto JovemRESUMO
Preventing relapses of Plasmodium vivax malaria through a radical cure depends on use of the 8-aminoquinoline primaquine, which is associated with safety and compliance issues. For future malaria eradication strategies, new, safer radical curative compounds that efficiently kill dormant liver stages (hypnozoites) will be essential. A new compound with potential radical cure activity was identified using a low-throughput assay of in vitro-cultured hypnozoite forms of Plasmodium cynomolgi (an excellent and accessible model for Plasmodium vivax). In this assay, primary rhesus hepatocytes are infected with P. cynomolgi sporozoites, and exoerythrocytic development is monitored in the presence of compounds. Liver stage cultures are fixed after 6 days and stained with anti-Hsp70 antibodies, and the relative proportions of small (hypnozoite) and large (schizont) forms relative to the untreated controls are determined. This assay was used to screen a series of 18 known antimalarials and 14 new non-8-aminoquinolines (preselected for blood and/or liver stage activity) in three-point 10-fold dilutions (0.1, 1, and 10 µM final concentrations). A novel compound, designated KAI407 showed an activity profile similar to that of primaquine (PQ), efficiently killing the earliest stages of the parasites that become either primary hepatic schizonts or hypnozoites (50% inhibitory concentration [IC50] for hypnozoites, KAI407, 0.69 µM, and PQ, 0.84 µM; for developing liver stages, KAI407, 0.64 µM, and PQ, 0.37 µM). When given as causal prophylaxis, a single oral dose of 100 mg/kg of body weight prevented blood stage parasitemia in mice. From these results, we conclude that KAI407 may represent a new compound class for P. vivax malaria prophylaxis and potentially a radical cure.
Assuntos
Antimaláricos/farmacologia , Imidazóis/farmacologia , Malária/tratamento farmacológico , Plasmodium cynomolgi/efeitos dos fármacos , Pirazinas/farmacologia , Animais , Antimaláricos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Hepatócitos/parasitologia , Imidazóis/uso terapêutico , Técnicas In Vitro , Fígado/parasitologia , Macaca mulatta/parasitologia , Malária/parasitologia , Malária/prevenção & controle , Camundongos , Camundongos Endogâmicos ICR , Pirazinas/uso terapêutico , Esporozoítos/efeitos dos fármacosRESUMO
There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]-induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis.
Assuntos
Ansiolíticos/química , Ansiolíticos/uso terapêutico , Modelos Animais de Doenças , Transtornos Mentais/tratamento farmacológico , Pirimidinas/química , Pirimidinas/uso terapêutico , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/uso terapêutico , Tiazóis/química , Tiazóis/uso terapêutico , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Ansiolíticos/farmacologia , Feminino , Masculino , Transtornos Mentais/metabolismo , Transtornos Mentais/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Pirimidinas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/fisiologia , Tiazóis/metabolismoRESUMO
We previously described a negative allosteric modulator (NAM) of FSHR (ADX61623) that blocked FSH-induced cAMP and progesterone production but did not block estradiol production. That FSHR NAM did not affect FSH-induced preovulatory follicle development as evidenced by the lack of an effect on the number of FSH-dependent oocytes found in the ampullae following ovulation with hCG. A goal is the development of a nonsteroidal contraceptive. Toward this end, a high-throughput screen using human FSHR identified an additional nonsteroidal small molecule (ADX68692). Although ADX68692 behaved like ADX61623 in inhibiting production of cAMP and progesterone, it also inhibited FSH-induced estradiol in an in vitro rat granulosa primary cell culture bioassay. When immature, noncycling female rats were injected subcutaneously or by oral dosing prior to exogenous FSH administration, it was found that ADX68692 decreased the number of oocytes recovered from the ampullae. The estrous cycles of mature female rats were disrupted by administration by oral gavage of 25 mg/kg and 10 mg/kg ADX68692. In the highest dose tested (25 mg/kg), 55% of animals cohabited with mature males had implantation sites compared to 33% in the 10 mg/kg group and 77% in the control group. A surprising finding was that a structural analog ADX68693, while effectively blocking progesterone production with similar efficacy as ADX68692, did not block estrogen production and despite better oral availability did not decrease the number of oocytes found in the ampullae even when used at 100 mg/kg. These data demonstrate that because of biased antagonism of the FSHR, nonsteroidal contraception requires that both arms of the FSHR steroidogenic pathway must be effectively blocked, particularly estrogen biosynthesis. Thus, a corollary to these findings is that it seems reasonable to propose that the estrogen-dependent diseases such as endometriosis may benefit from inhibition of FSH action at the ovary using the FSHR NAM approach.
Assuntos
Benzamidas/farmacologia , Hormônio Foliculoestimulante/antagonistas & inibidores , Fase Folicular/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Receptores do FSH/antagonistas & inibidores , Regulação Alostérica , Animais , Células Cultivadas , Feminino , Hormônio Foliculoestimulante/farmacologia , Antagonistas de Hormônios/farmacologia , Masculino , Indução da Ovulação , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores do FSH/metabolismoRESUMO
Malaria is a disease that still affects a significant proportion of the global human population. Whilst advances have been made in lowering the numbers of cases and deaths, it is clear that a strategy based solely on disease control year on year, without reducing transmission and ultimately eradicating the parasite, is unsustainable. This article highlights the current mainstay treatments alongside a selection of emerging new clinical molecules from the portfolio of Medicines for Malaria Venture (MMV) and our partners. In each case, the key highlights from each research phase are described to demonstrate how these new potential medicines were discovered. Given the increased focus of the community on eradicating the disease, the strategy for next generation combination medicines that will provide such potential is explained.
Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Antimaláricos/síntese química , Ensaios Clínicos como Assunto , Erradicação de Doenças , Combinação de Medicamentos , Desenho de Fármacos , Humanos , Malária/parasitologia , Malária/prevenção & controle , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium vivax/crescimento & desenvolvimento , Plasmodium vivax/metabolismo , Relação Estrutura-AtividadeRESUMO
Metabotropic glutamate receptor 7 (mGlu(7)) has been suggested to be a promising novel target for treatment of a range of disorders, including anxiety, post-traumatic stress disorder, depression, drug abuse, and schizophrenia. Here we characterized a potent and selective mGlu(7) negative allosteric modulator (NAM) (+)-6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one (ADX71743). In vitro, Schild plot analysis and reversibility tests at the target confirmed the NAM properties of the compound and attenuation of L-(+)-2-amino-4-phosphonobutyric acid-induced synaptic depression confirmed activity at the native receptor. The pharmacokinetic analysis of ADX71743 in mice and rats revealed that it is bioavailable after s.c. administration and is brain penetrant (cerebrospinal fluid concentration/total plasma concentration ratio at C(max) = 5.3%). In vivo, ADX71743 (50, 100, 150 mg/kg, s.c.) caused no impairment of locomotor activity in rats and mice or activity on rotarod in mice. ADX71743 had an anxiolytic-like profile in the marble burying and elevated plus maze tests, dose-dependently reducing the number of buried marbles and increasing open arm exploration, respectively. Whereas ADX71743 caused a small reduction in amphetamine-induced hyperactivity in mice, it was inactive in the mouse 2,5-dimethoxy-4-iodoamphetamine-induced head twitch and the rat conditioned avoidance response tests. In addition, the compound was inactive in the mouse forced swim test. These data suggest that ADX71743 is a suitable compound to help unravel the physiologic role of mGlu(7) and to better understand its implication in central nervous system diseases. Our in vivo tests using ADX71743, reported here, suggest that pharmacological inhibition of mGlu(7) is a valid approach for developing novel pharmacotherapies to treat anxiety disorders, but may not be suitable for treatment of depression or psychosis.
Assuntos
Comportamento Animal/efeitos dos fármacos , Oxazolona/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica , Anfetamina/farmacologia , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/metabolismo , Linhagem Celular , Pareamento Cromossômico/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Feminino , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Oxazolona/farmacocinética , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologiaRESUMO
The sporozoite stages of malaria parasites are the primary cause of infection of the vertebrate host and are targeted by (experimental) vaccines. Yet, little is known about their susceptibility to chemical intervention. Phenotypic high-throughput screens have not been feasible due to a lack of in vitro systems. Here we tested 78 marketed and experimental antimalarial compounds in miniaturized assays addressing sporozoite viability, gliding motility, hepatocyte traversal, and intrahepatocytic schizogony. None potently interfered with sporozoite viability or motility but ten compounds acted at the level of schizogony with IC50s < 100 nM. To identify compounds directly targeting sporozoites, we screened 81,000 compounds from the Global Health Diversity and reFRAME libraries in a sporozoite viability assay using a parasite expressing a luciferase reporter driven by the circumsporozoite promoter. The ionophore gramicidin emerged as the single hit from this screening campaign. Its effect on sporozoite viability translated into reduced gliding motility and an inability of sporozoites to invade human primary hepatocytes and develop into hepatic schizonts. While providing proof of concept for a small molecule sporontocidal mode of action, our combined data indicate that liver schizogony is more accessible to chemical intervention by (candidate) antimalarials.