Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 55(6): 1797-807, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22391949

RESUMO

AIMS/HYPOTHESIS: This study investigates the role of serine/threonine protein kinase 25 (STK25), a member of the sterile 20 (STE20) superfamily of kinases, in the regulation of skeletal muscle metabolism. METHODS: The effect of depleting STK25 in muscle cells was studied by reducing the mRNA and protein content of this target in the rat myoblast cell line L6 by small interfering (si)RNA. The changes in the mRNA and protein levels of several members of the fatty acid oxidative and glucose metabolic pathways were measured by quantitative real-time (qRT)-PCR and western blot. The rate of palmitate oxidation and glucose uptake was measured after transfection with siRNA for Stk25. Expression of STK25 was also evaluated in skeletal muscle biopsies from 41 white Europid men and women with normal and impaired glucose tolerance and type 2 diabetes using qRT-PCR. RESULTS: We demonstrate that partial depletion of STK25 increases the expression of uncoupling protein 3 (Ucp3), accompanied by increased lipid oxidation, in myoblasts. In addition, a reduced level of STK25 enhances the expression of Slc2a1 (also known as Glut1), Slc2a4 (also known as Glut4) and hexokinase 2, and correspondingly, improves insulin-stimulated glucose uptake in muscle cells. Consistent with these results, significantly higher STK25 levels were observed in the skeletal muscle of type 2 diabetic patients, compared with individuals with normal glucose tolerance. CONCLUSIONS/INTERPRETATION: This is the first study indicating a possible role for STK25 in the regulation of glucose and lipid metabolism in L6 myoblasts. This kinase appears to be an interesting new mediator to be evaluated for therapeutic intervention in type 2 diabetes and related complications, as controlled increase in lipid oxidation and insulin-stimulated glucose uptake in skeletal muscle is favourable and can restore energy balance in metabolically compromised states.


Assuntos
Glucose/metabolismo , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Western Blotting , Linhagem Celular , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Ácido Palmítico/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno , Ratos , Reação em Cadeia da Polimerase em Tempo Real
2.
Diabetologia ; 53(11): 2406-16, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20652679

RESUMO

AIM/HYPOTHESIS: The aim of the study was to examine the possible role of AMP-activated protein kinase (AMPK) in the regulation of the inflammatory response induced by cytokine action in human liver cells. METHODS: IL-6-stimulated expression of the genes for acute-phase response markers serum amyloid A (SAA1, SAA2) and haptoglobin (HP) in the human hepatocarcinoma cell line HepG2 were quantified after modulation of AMPK activity by pharmacological agonists (5-amino-4-imidazole-carboxamideriboside [AICAR], metformin) or by using small interfering (si) RNA transfection. The intracellular signalling pathway mediating the effect of AMPK on IL-6-stimulated acute-phase marker expression was characterised by assessing the phosphorylation levels of the candidate protein signal transducer and activator of transcription 3 (STAT3) in response to AMPK agonists. RESULTS: AICAR and metformin markedly blunt the IL-6-stimulated expression of SAA cluster genes as well as of haptoglobin in a dose-dependent manner. Moreover, the repression of AMPK activity by siRNA significantly reversed the inhibition of SAA expression by both AICAR and metformin, indicating that the effect of the agonists is dependent on AMPK. For the first time we show that AMPK appears to regulate IL-6 signalling by directly inhibiting the activation of the main downstream target of IL-6, STAT3. CONCLUSIONS/INTERPRETATION: We provide evidence for a key function of AMPK in suppression of the acute-phase response caused by the action of IL-6 in liver, suggesting that AMPK may act as an intracellular link between chronic low-grade inflammation and metabolic regulation in peripheral metabolic tissues.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Interleucina-6/farmacologia , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Fígado/enzimologia , Metformina/farmacologia , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA