Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39116349

RESUMO

Studies in animal models suggest a linkage between inflammatory response to injury and subsequent nephron loss during acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Failure of normal repair during CKD transition correlates with de novo expression of vascular cell adhesion protein-1 (VCAM-1) by a subset of injured proximal tubule cells. This study identifies the role of VCAM-1 expression in promoting the failed repair state. Single-cell transcriptome analysis of patients with AKI and CKD, and whole kidney RNA and protein analyses of mouse models of CKD, confirmed a marked increase of VCAM-1 expression in the proximal tubules of injured kidneys. In immortalized mouse proximal tubular (MPT) cells and primary cultured renal cells (PCRCs), VCAM-1 expression was induced by proinflammatory cytokines including TNFα and IL-1ß. Analyses of bulk RNA sequencing of TNFα-treated PCRCs or pseudo-bulk RNA sequencing of biopsies from the Kidney Precision Medicine Project (KPMP) datasets indicated activation of NF-κB and an enrichment of inflammatory response and cell adhesion pathways in VCAM-1-positive cells. Pharmacologic inhibition of NF-κB signaling or genetic deletion of myeloid differentiation factor 88 (Myd88) and TIR-domain-containing adapter-inducing interferon-ß (Trif) suppressed TNFα- and IL-1ß-induced VCAM-1 expression in vitro. TNFα stimulation or overexpression of VCAM-1 significantly increased splenocyte adhesion to the MPT monolayer in culture. These results demonstrate that persistence of proinflammatory cytokines after AKI can induce NF-κB-dependent VCAM-1 expression by proximal tubule cells, mediating increased immune cell adhesion to the tubule and thus promoting further tubule injury and greater risk of progression from AKI to CKD.

2.
Kidney Int ; 104(6): 1194-1205, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652206

RESUMO

Biomarkers of tubular function such as epidermal growth factor (EGF) may improve prognostication of participants at highest risk for chronic kidney disease (CKD) after hospitalization. To examine this, we measured urinary EGF (uEGF) from samples collected in the Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury (ASSESS-AKI) Study, a multi-center, prospective, observational cohort of hospitalized participants with and without AKI. Cox proportional hazards regression was used to investigate the association of uEGF/Cr at hospitalization, three months post-discharge, and the change between these time points with major adverse kidney events (MAKE): CKD incidence, progression, or development of kidney failure. Clinical findings were paired with mechanistic studies comparing relative Egf expression in mouse models of kidney atrophy or repair after ischemia-reperfusion injury. MAKE was observed in 20% of 1,509 participants over 4.3 years of follow-up. Each 2-fold higher level of uEGF/Cr at three months was associated with decreased risk of MAKE (adjusted hazards ratio 0.46, 95% confidence interval: 0.39-0.55). Participants with the highest increase in uEGF/Cr from hospitalization to three-month follow-up had a lower risk of MAKE (adjusted hazards ratio 0.52; 95% confidence interval: 0.36-0.74) compared to those with the least change in uEGF/Cr. A model using uEGF/Cr at three months combined with clinical variables yielded moderate discrimination for MAKE (area under the curve 0.73; 95% confidence interval: 0.69-0.77) and strong discrimination for kidney failure at four years (area under the curve 0.96; 95% confidence interval: 0.92-1.00). Accelerated restoration of Egf expression in mice was seen in the model of adaptive repair after injury, compared to a model of progressive atrophy. Thus, urinary EGF/Cr may be a biomarker of distal tubular health, with higher concentrations and increased uEGF/Cr post-discharge independently associated with reduced risk of MAKE in hospitalized patients.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Fator de Crescimento Epidérmico , Estudos Prospectivos , Assistência ao Convalescente , Taxa de Filtração Glomerular , Alta do Paciente , Rim , Insuficiência Renal Crônica/diagnóstico , Biomarcadores , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Atrofia
3.
J Am Soc Nephrol ; 33(6): 1077-1086, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35577558

RESUMO

BACKGROUND: After kidney injury, macrophages transition from initial proinflammatory activation to a proreparative phenotype characterized by expression of arginase-1 (Arg1), mannose receptor 1 (Mrc1), and macrophage scavenger receptor 1 (Msr1). The mechanism by which these alternatively activated macrophages promote repair is unknown. METHODS: We characterized the macrophage and renal responses after ischemia-reperfusion injury with contralateral nephrectomy in LysM-Cre;Arg1fl/fl mice and littermate controls and used in vitro coculture of macrophages and tubular cells to determine how macrophage-expressed arginase-1 promotes kidney repair. RESULTS: After ischemia-reperfusion injury with contralateral nephrectomy, Arg1-expressing macrophages were almost exclusively located in the outer stripe of the medulla adjacent to injured S3 tubule segments containing luminal debris or casts. Macrophage Arg1 expression was reduced by more than 90% in injured LysM-Cre;Arg1fl/fl mice, resulting in decreased mouse survival, decreased renal tubular cell proliferation and decreased renal repair compared with littermate controls. In vitro studies demonstrate that tubular cells exposed apically to dead cell debris secrete high levels of GM-CSF and induce reparative macrophage activation, with those macrophages in turn secreting Arg1-dependent factor(s) that directly stimulate tubular cell proliferation. CONCLUSIONS: GM-CSF-induced, proreparative macrophages express arginase-1, which is required for the S3 tubular cell proliferative response that promotes renal repair after ischemia-reperfusion injury.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Traumatismo por Reperfusão , Animais , Arginase/genética , Arginase/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Regeneração , Traumatismo por Reperfusão/metabolismo
4.
Am J Physiol Renal Physiol ; 322(3): F322-F334, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100823

RESUMO

Renal tubular casts originating from detached epithelial cells after ischemia-reperfusion injury (IRI) can obstruct tubules and negatively impact glomerular filtration rate. Using multiphoton imaging of 400-µm-thick kidney sections, the distribution of casts and morphometric measurement of tubules was performed along the entire nephron for the first time. Tubular nuclei are shed before cell detachment, and visually occlusive casts (grade 3) appeared at 12 h after IRI at the S3/thin descending limb (tDL) junction. Grade 3 casts peaked at 24 h after injury [present in 99% of S3, 78% of tDL, 76% of thin ascending limb (tAL), 60% of medullary thick ascending limb (mTAL), and 10% of connecting tubule segments]. Cast formation in the S3 correlated with selective loss of cell numbers from this tubule segment. By day 3, most mTALs and connecting tubules were cast free, whereas 72% of S3 tubules and 58% of tDLs still contained grade 3 casts. Although bulk phagocytosis of cast material by surviving tubular cells was not observed, mass spectrometry identified large numbers of tryptic peptides in the outer medulla, and trypsin levels were significantly increased in the kidney and urine 24 h after IRI. Administration of either antipain or camostat to inhibit trypsin extended cast burden to the S2, led to sustained accumulation of S3 casts after IRI, but did not affect cast burden in the mTAL or renal function. Our data provide detailed and dynamic mapping of tubular cast formation and resolution after IRI that can inform future interventions to accelerate cast clearance and renal recovery.NEW & NOTEWORTHY This detailed characterization of the dynamic distribution of dead cell debris in ischemically injured kidney tubules reveals which cells in the kidney are most severely injured, when and where tubular casts form, and when (and to a lesser extent, how) they are cleared.


Assuntos
Néfrons , Traumatismo por Reperfusão , Taxa de Filtração Glomerular , Humanos , Rim , Túbulos Renais
5.
Nephrol Dial Transplant ; 37(11): 2214-2222, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34865148

RESUMO

BACKGROUND: Patients with acute interstitial nephritis (AIN) can present without typical clinical features, leading to a delay in diagnosis and treatment. We therefore developed and validated a diagnostic model to identify patients at risk of AIN using variables from the electronic health record. METHODS: In patients who underwent a kidney biopsy at Yale University between 2013 and 2018, we tested the association of >150 variables with AIN, including demographics, comorbidities, vital signs and laboratory tests (training set 70%). We used least absolute shrinkage and selection operator methodology to select prebiopsy features associated with AIN. We performed area under the receiver operating characteristics curve (AUC) analysis with internal (held-out test set 30%) and external validation (Biopsy Biobank Cohort of Indiana). We tested the change in model performance after the addition of urine biomarkers in the Yale AIN study. RESULTS: We included 393 patients (AIN 22%) in the training set, 158 patients (AIN 27%) in the test set, 1118 patients (AIN 11%) in the validation set and 265 patients (AIN 11%) in the Yale AIN study. Variables in the selected model included serum creatinine {adjusted odds ratio [aOR] 2.31 [95% confidence interval (CI) 1.42-3.76]}, blood urea nitrogen:creatinine ratio [aOR 0.40 (95% CI 0.20-0.78)] and urine dipstick specific gravity [aOR 0.95 (95% CI 0.91-0.99)] and protein [aOR 0.39 (95% CI 0.23-0.68)]. This model showed an AUC of 0.73 (95% CI 0.64-0.81) in the test set, which was similar to the AUC in the external validation cohort [0.74 (95% CI 0.69-0.79)]. The AUC improved to 0.84 (95% CI 0.76-0.91) upon the addition of urine interleukin-9 and tumor necrosis factor-α. CONCLUSIONS: We developed and validated a statistical model that showed a modest AUC for AIN diagnosis, which improved upon the addition of urine biomarkers. Future studies could evaluate this model and biomarkers to identify unrecognized cases of AIN.


Assuntos
Interleucina-9 , Nefrite Intersticial , Humanos , Creatinina , Interleucina-9/uso terapêutico , Registros Eletrônicos de Saúde , Fator de Necrose Tumoral alfa , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/epidemiologia , Nefrite Intersticial/tratamento farmacológico , Biópsia , Biomarcadores/análise
6.
Am J Kidney Dis ; 77(4): 490-499.e1, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422598

RESUMO

RATIONALE & OBJECTIVE: Although coronavirus disease 2019 (COVID-19) has been associated with acute kidney injury (AKI), it is unclear whether this association is independent of traditional risk factors such as hypotension, nephrotoxin exposure, and inflammation. We tested the independent association of COVID-19 with AKI. STUDY DESIGN: Multicenter, observational, cohort study. SETTING & PARTICIPANTS: Patients admitted to 1 of 6 hospitals within the Yale New Haven Health System between March 10, 2020, and August 31, 2020, with results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing via polymerase chain reaction of a nasopharyngeal sample. EXPOSURE: Positive test for SARS-CoV-2. OUTCOME: AKI by KDIGO (Kidney Disease: Improving Global Outcomes) criteria. ANALYTICAL APPROACH: Evaluated the association of COVID-19 with AKI after controlling for time-invariant factors at admission (eg, demographic characteristics, comorbidities) and time-varying factors updated continuously during hospitalization (eg, vital signs, medications, laboratory results, respiratory failure) using time-updated Cox proportional hazard models. RESULTS: Of the 22,122 patients hospitalized, 2,600 tested positive and 19,522 tested negative for SARS-CoV-2. Compared with patients who tested negative, patients with COVID-19 had more AKI (30.6% vs 18.2%; absolute risk difference, 12.5% [95% CI, 10.6%-14.3%]) and dialysis-requiring AKI (8.5% vs 3.6%) and lower rates of recovery from AKI (58% vs 69.8%). Compared with patients without COVID-19, patients with COVID-19 had higher inflammatory marker levels (C-reactive protein, ferritin) and greater use of vasopressors and diuretic agents. Compared with patients without COVID-19, patients with COVID-19 had a higher rate of AKI in univariable analysis (hazard ratio, 1.84 [95% CI, 1.73-1.95]). In a fully adjusted model controlling for demographic variables, comorbidities, vital signs, medications, and laboratory results, COVID-19 remained associated with a high rate of AKI (adjusted hazard ratio, 1.40 [95% CI, 1.29-1.53]). LIMITATIONS: Possibility of residual confounding. CONCLUSIONS: COVID-19 is associated with high rates of AKI not fully explained by adjustment for known risk factors. This suggests the presence of mechanisms of AKI not accounted for in this analysis, which may include a direct effect of COVID-19 on the kidney or other unmeasured mediators. Future studies should evaluate the possible unique pathways by which COVID-19 may cause AKI.


Assuntos
Injúria Renal Aguda/epidemiologia , COVID-19/epidemiologia , Injúria Renal Aguda/sangue , Injúria Renal Aguda/terapia , Idoso , Proteína C-Reativa/metabolismo , COVID-19/metabolismo , COVID-19/terapia , Estudos de Coortes , Creatinina/sangue , Diuréticos/uso terapêutico , Feminino , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Diálise Renal , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/epidemiologia , Respiração Artificial , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença , Estados Unidos/epidemiologia , Vasoconstritores/uso terapêutico
7.
Nephrol Dial Transplant ; 36(10): 1851-1858, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33125471

RESUMO

BACKGROUND: We previously demonstrated that urine interleukin (IL)-9 and tumor necrosis factor (TNF)-α can distinguish acute interstitial nephritis (AIN) from other causes of acute kidney injury. Here we evaluated the role of these biomarkers to prognosticate kidney function in patients with AIN. METHODS: In a cohort of participants with biopsy-proven, adjudicated AIN, we tested the association of histological features and urine biomarkers (IL-9 and TNF-α) with estimated glomerular filtration rate measured 6 months after diagnosis (6 m-eGFR) controlling for eGFR before AIN and albuminuria. We also evaluated subgroups in whom corticosteroid use was associated with 6 m-eGFR. RESULTS: In the 51 (93%) of the 55 participants with complete data, median (interquartile range) eGFR before and 6 m after AIN were 41 (27-69) and 28 (13-47) mL/min/1.73 m2, respectively. Patients with higher severity of interstitial fibrosis had lower 6 m-eGFR, whereas those with higher tubulointerstitial infiltrate had higher 6 m-eGFR. IL-9 levels were associated with lower 6 m-eGFR only in the subset of patients who did not receive corticosteroids [6m-eGFR per doubling of IL-9, -6.0 (-9.4 to -2.6) mL/min/1.73 m2]. Corticosteroid use was associated with higher 6 m-eGFR [20.9 (0.2, 41.6) mL/min/1.73 m2] only in those with urine IL-9 above the median (>0.66 ng/g) but not in others. CONCLUSIONS: Urine IL-9 was associated with lower 6 m-eGFR only in participants not treated with corticosteroids. Corticosteroid use was associated with higher 6 m-eGFR in those with high urine IL-9. These findings provide a framework for IL-9-guided clinical trials to test efficacy of immunosuppressive therapy in patients with AIN.


Assuntos
Interleucina-9/urina , Nefrite Intersticial , Fator de Necrose Tumoral alfa , Taxa de Filtração Glomerular , Humanos , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/tratamento farmacológico , Prognóstico , Fator de Necrose Tumoral alfa/urina
8.
Clin Nephrol ; 96(2): 112-119, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34142944

RESUMO

Retroperitoneal fibrosis and chronic periaortitis describe overlapping groups of rare diseases characterized by inflammation and fibrosis involving the aorta. The presentation is often non-specific, and while obstructive nephropathy is a common complication, these entities are an uncommon cause of renal failure necessitating dialysis. A 57-year-old man presented multiple times with acute kidney injury, even requiring hemodialysis, with repeated abrupt resolution. Renal ultrasound repeatedly did not reveal acute hydronephrosis. Renal biopsy on his first admission showed acute tubular injury attributed to hypovolemia. Computed tomography finally revealed a retroperitoneal soft tissue mass encasing the infrarenal abdominal aorta and partially encasing the bilateral ureters. Bilateral nephrostomy tubes were placed, steroids were initiated, and the patient experienced rapid and remarkable improvement in renal function. Chronic periaortitis should be considered in older patients with acute kidney injury, even in the absence of ultrasonographic evidence of obstruction. Additional studies are needed to describe the test characteristics of renal sonography for periaortitis, the long-term sequelae of acute kidney injury secondary to periaortitis, and the optimal management to preserve long-term renal function.


Assuntos
Injúria Renal Aguda , Fibrose Retroperitoneal , Humanos , Rim/patologia , Masculino , Pessoa de Meia-Idade
9.
Annu Rev Physiol ; 79: 449-469, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28192060

RESUMO

Acute kidney injury (AKI) is a growing global health concern, yet no treatment is currently available to prevent it or to promote kidney repair after injury. Animal models demonstrate that the macrophage is a major contributor to the inflammatory response to AKI. Emerging data from human biopsies also corroborate the presence of macrophages in AKI and their persistence in progressive chronic kidney disease. Macrophages are phagocytic innate immune cells that are important mediators of tissue homeostasis and host defense. In response to tissue injury, macrophages become activated based on specific signals from the damaged microenvironment. The activation and functional state of the macrophage depends on the stage of tissue injury and repair, reflecting a dynamic and diverse spectrum of macrophage phenotypes. In this review, we highlight our current understanding of the mechanisms by which macrophages contribute to injury and repair after AKI.


Assuntos
Injúria Renal Aguda/fisiopatologia , Rim/fisiopatologia , Macrófagos/fisiologia , Animais , Microambiente Celular/fisiologia , Modelos Animais de Doenças , Humanos , Imunidade Inata/fisiologia , Inflamação/patologia
10.
J Am Soc Nephrol ; 30(10): 1825-1840, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31315923

RESUMO

BACKGROUND: After bilateral kidney ischemia/reperfusion injury (IRI), monocytes infiltrate the kidney and differentiate into proinflammatory macrophages in response to the initial kidney damage, and then transition to a form that promotes kidney repair. In the setting of unilateral IRI (U-IRI), however, we have previously shown that macrophages persist beyond the time of repair and may promote fibrosis. METHODS: Macrophage homing/survival signals were determined at 14 days after injury in mice subjected to U-IRI and in vitro using coculture of macrophages and tubular cells. Mice genetically engineered to lack Ccr2 and wild-type mice were treated ±CCR2 antagonist RS102895 and subjected to U-IRI to quantify macrophage accumulation, kidney fibrosis, and inflammation 14 and 30 days after the injury. RESULTS: Failure to resolve tubular injury after U-IRI results in sustained expression of granulocyte-macrophage colony-stimulating factor by renal tubular cells, which directly stimulates expression of monocyte chemoattractant protein-1 (Mcp-1) by macrophages. Analysis of CD45+ immune cells isolated from wild-type kidneys 14 days after U-IRI reveals high-level expression of the MCP-1 receptor Ccr2. In mice lacking Ccr2 and wild-type mice treated with RS102895, the numbers of macrophages, dendritic cells, and T cell decreased following U-IRI, as did the expression of profibrotic growth factors and proimflammatory cytokines. This results in a reduction in extracellular matrix and kidney injury markers. CONCLUSIONS: GM-CSF-induced MCP-1/CCR2 signaling plays an important role in the cross-talk between injured tubular cells and infiltrating immune cells and myofibroblasts, and promotes sustained inflammation and tubular injury with progressive interstitial fibrosis in the late stages of U-IRI.


Assuntos
Quimiocina CCL2/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Inflamação/etiologia , Rim/irrigação sanguínea , Rim/patologia , Receptores CCR2/fisiologia , Traumatismo por Reperfusão/complicações , Animais , Células Cultivadas , Fibrose/etiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Macrófagos , Camundongos
11.
J Am Soc Nephrol ; 29(10): 2471-2481, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30209078

RESUMO

BACKGROUND: In patients with autosomal dominant polycystic kidney disease (ADPKD), most of whom have a mutation in PKD1 or PKD2, abnormally large numbers of macrophages accumulate around kidney cysts and promote their growth. Research by us and others has suggested that monocyte chemoattractant protein-1 (Mcp1) may be a signal for macrophage-mediated cyst growth. METHODS: To define the role of Mcp1 and macrophages in promoting cyst growth, we used mice with inducible knockout of Pkd1 alone (single knockout) or knockout of both Pkd1 and Mcp1 (double knockout) in the murine renal tubule. Levels of Mcp1 RNA expression were measured in single-knockout mice and controls. RESULTS: In single-knockout mice, upregulation of Mcp1 precedes macrophage infiltration. Macrophages accumulating around nascent cysts (0-2 weeks after induction) are initially proinflammatory and induce tubular cell injury with morphologic flattening, oxidative DNA damage, and proliferation-independent cystic dilation. At 2-6 weeks after induction, macrophages switch to an alternative activation phenotype and promote further cyst growth because of an additional three-fold increase in tubular cell proliferative rates. In double-knockout mice, there is a marked reduction in Mcp1 expression and macrophage numbers, resulting in less initial tubular cell injury, slower cyst growth, and improved renal function. Treatment of single-knockout mice with an inhibitor to the Mcp1 receptor Ccr2 partially reproduced the morphologic and functional improvement seen with Mcp1 knockout. CONCLUSIONS: Mcp1 is upregulated after knockout of Pkd1 and promotes macrophage accumulation and cyst growth via both proliferation-independent and proliferation-dependent mechanisms in this orthologous mouse model of ADPKD.


Assuntos
Quimiocina CCL2/genética , Quimiocina CCL2/fisiologia , Macrófagos/fisiologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Animais , Quimiocina CCL2/deficiência , Dano ao DNA , Modelos Animais de Doenças , Humanos , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Ativação de Macrófagos/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Rim Policístico Autossômico Dominante/fisiopatologia , Pirrolidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores CCR2/antagonistas & inibidores , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/genética , Regulação para Cima
13.
J Am Soc Nephrol ; 28(11): 3218-3226, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28679671

RESUMO

The normal response to kidney injury includes a robust inflammatory infiltrate of PMNs and macrophages. We previously showed that the small secreted protein breast regression protein-39 (BRP-39), also known as chitinase 3-like 1 (CHI3L1) and encoded by the Chi3l1 gene, is expressed at high levels by macrophages during the early stages of kidney repair and promotes tubular cell survival via IL-13 receptor α2 (IL13Rα2)-mediated signaling. Here, we investigated the role of BRP-39 in profibrotic responses after AKI. In wild-type mice, failure to resolve tubular injury after unilateral ischemia-reperfusion injury (U-IRI) led to sustained low-level Chi3l1 mRNA expression by renal cells and promoted macrophage persistence and severe interstitial fibrosis. Analysis of macrophages isolated from wild-type kidneys 14 days after U-IRI revealed high-level expression of the profibrotic BRP-39 receptor Ptgdr2/Crth2 and expression of the profibrotic markers Lgals3, Pdgfb, Egf, and Tgfb In comparison, injured kidneys from mice lacking BRP-39 had significantly fewer macrophages, reduced expression of profibrotic growth factors, and decreased accumulation of extracellular matrix. BRP-39 depletion did not affect myofibroblast accumulation but did attenuate myofibroblast expression of Col1a1, Col3a1, and Fn1 Together, these results identify BRP-39 as an important activator of macrophage-myofibroblast crosstalk and profibrotic signaling in the setting of maladaptive kidney repair.


Assuntos
Injúria Renal Aguda/etiologia , Proteína 1 Semelhante à Quitinase-3/fisiologia , Rim/patologia , Miofibroblastos/fisiologia , Animais , Fibrose/etiologia , Masculino , Camundongos
14.
J Am Soc Nephrol ; 28(2): 661-670, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27451287

RESUMO

Deceased donor kidneys with AKI are often discarded for fear of poor transplant outcomes. Donor biomarkers that predict post-transplant renal recovery could improve organ selection and reduce discard. We tested whether higher levels of donor urinary YKL-40, a repair phase protein, associate with improved recipient outcomes in a prospective cohort study involving deceased kidney donors from five organ procurement organizations. We measured urinary YKL-40 concentration in 1301 donors (111 had AKI, defined as doubling of serum creatinine) and ascertained outcomes in the corresponding 2435 recipients, 756 of whom experienced delayed graft function (DGF). Donors with AKI had higher urinary YKL-40 concentration (P<0.001) and acute tubular necrosis on procurement biopsies (P=0.05). In fully adjusted analyses, elevated donor urinary YKL-40 concentration associated with reduced risk of DGF in both recipients of AKI donor kidneys (adjusted relative risk, 0.51 [95% confidence interval (95% CI), 0.32 to 0.80] for highest versus lowest YKL-40 tertile) and recipients of non-AKI donor kidneys (adjusted relative risk, 0.79 [95% CI, 0.65 to 0.97]). Furthermore, in the event of DGF, elevated donor urinary YKL-40 concentration associated with higher 6-month eGFR (6.75 [95% CI, 1.49 to 12.02] ml/min per 1.73 m2) and lower risk of graft failure (adjusted hazard ratio, 0.50 [95% CI, 0.27 to 0.94]). These findings suggest that YKL-40 is produced in response to tubular injury and is independently associated with recovery from AKI and DGF. If ultimately validated as a prognostic biomarker, urinary YKL-40 should be considered in determining the suitability of donor kidneys for transplant.


Assuntos
Injúria Renal Aguda/urina , Proteína 1 Semelhante à Quitinase-3/urina , Função Retardada do Enxerto/epidemiologia , Transplante de Rim , Adulto , Cadáver , Feminino , Humanos , Masculino , Estudos Prospectivos , Recuperação de Função Fisiológica , Doadores de Tecidos , Obtenção de Tecidos e Órgãos
15.
J Am Soc Nephrol ; 26(6): 1334-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25388222

RESUMO

After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4-stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury.


Assuntos
Injúria Renal Aguda/metabolismo , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Ativação de Macrófagos/genética , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/fisiopatologia , Análise de Variância , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Imuno-Histoquímica , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise Multivariada , Fenótipo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais , Regulação para Cima
16.
J Biol Chem ; 289(20): 14341-50, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24692544

RESUMO

While Wnt and Hgf signaling pathways are known to regulate epithelial cell responses during injury and repair, whether they exhibit functional cross-talk is not well defined. Canonical Wnt signaling is initiated by the phosphorylation of the Lrp5/6 co-receptors. In the current study we demonstrate that Hgf stimulates Met and Gsk3-dependent and Wnt-independent phosphorylation of Lrp5/6 at three separate activation motifs in subconfluent, de-differentiated renal epithelial cells. Hgf treatment stimulates the selective association of active Gsk3 with Lrp5/6. In contrast, Akt-phosphorylated inactive Gsk3 is excluded from this association. Hgf stimulates ß-catenin stabilization and nuclear accumulation and protects against epithelial cell apoptosis in an Lrp5/6-dependent fashion. In vivo, the increase in Lrp5/6 phosphorylation and ß-catenin stabilization in the first 6-24 h after renal ischemic injury was significantly reduced in mice lacking Met receptor in the renal proximal tubule. Our results thus identify Hgf as an important transactivator of canonical Wnt signaling that is mediated by Met-stimulated, Gsk3-dependent Lrp5/6 phosphorylation.


Assuntos
Fator de Crescimento de Hepatócito/farmacologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Isquemia/metabolismo , Isquemia/patologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/patologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Fosforilação/efeitos dos fármacos , beta Catenina/metabolismo
17.
Pediatr Nephrol ; 30(2): 199-209, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24442822

RESUMO

Acute ischemic kidney injury is a common complication in hospitalized patients. No treatment is yet available for augmenting kidney repair or preventing progressive kidney fibrosis. Animal models of acute kidney injury demonstrate that activation of the innate immune system plays a major role in the systemic response to ischemia/reperfusion injury. Macrophage depletion studies suggest that macrophages, key participants in the innate immune response, augment the initial injury after reperfusion but also promote tubular repair and contribute to long-term kidney fibrosis after ischemic injury. The distinct functional outcomes seen following macrophage depletion at different time points after ischemia/reperfusion injury suggest heterogeneity in macrophage activation states. Identifying the pathways that regulate the transitions of macrophage activation is thus critical for understanding the mechanisms that govern both macrophage-mediated injury and repair in the postischemic kidney. This review examines our understanding of the complex and intricately controlled pathways that determine monocyte recruitment, macrophage activation, and macrophage effector functions after renal ischemia/reperfusion injury. Careful delineation of repair and resolution pathways could provide therapeutic targets for the development of effective treatments to offer patients with acute kidney injury.


Assuntos
Injúria Renal Aguda/imunologia , Macrófagos/imunologia , Traumatismo por Reperfusão/imunologia , Animais , Humanos
18.
J Am Soc Nephrol ; 25(2): 329-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24136921

RESUMO

Renal proximal tubule epithelial cells express high levels of the hepatocyte growth factor receptor Met, and both the receptor and ligand are upregulated after ischemic injury. Activation of the Met receptor after hepatocyte growth factor stimulation in vitro promotes activities involved in kidney repair, including cell survival, migration, and proliferation. However, characterizing the in vivo role of these signaling events in proximal tubule responses to kidney injury has been difficult because global Met knockout results in embryonic lethality due to placental and liver abnormalities. Here, we used γGT-Cre to knockout Met receptor expression selectively in the proximal tubules of mice (γGT-Cre;Met(fl/fl)). The kidneys of these mice developed normally, but exhibited increased initial tubular injury, tubular cell apoptosis, and serum creatinine after ischemia/reperfusion compared with γGT-Cre;Met(+/+) kidneys. These changes in γGT-Cre;Met(fl/fl) mice correlated with a selective reduction in PI3K/Akt activation in response to injury and subsequent decreases in inhibitory phosphorylation of the proapoptotic factor Bad and activating phosphorylation of the ribosomal regulatory protein p70-S6 kinase. Moreover, tubular cell proliferation after ischemia/reperfusion was delayed in γGT-Cre;Met(fl/fl) mice. In conclusion, this study identifies Met-dependent phosphoinositide 3-kinase activation in proximal tubules as a critical determinant of initial tubular cell survival and reparative proliferation after ischemic injury.


Assuntos
Injúria Renal Aguda/enzimologia , Rim/irrigação sanguínea , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Traumatismo por Reperfusão/enzimologia , Transdução de Sinais/fisiologia , Animais , Apoptose , Técnicas de Silenciamento de Genes , Rim/enzimologia , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
19.
Respir Res ; 15: 32, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24641672

RESUMO

BACKGROUND: Previous work in our laboratory demonstrated that hyperoxia suppressed the expression of vascular endothelial growth factor (VEGF) by the embryonic lung, leading to increased epithelial cell apoptosis and failure of explant airway growth and branching that was rescued by the addition of Vegf165. The aims of this study were to determine protective pathways by which VEGF isoforms attenuate hyperoxic lung growth retardation and to identify the target cell for VEGF action. METHODS: Timed pregnant CD-1 or fetal liver kinase (FLK1)-eGFP lung explants cultured in 3% or 50% oxygen were treated ± Vegf121, VEGF164/Vegf165 or VEGF188 in the presence or absence of anti-rat neuropilin-1 (NRP1) antibody or GO6983 (protein kinase C (PKC) pan-inhibitor) and lung growth and branching quantified. Immunofluorescence studies were performed to determine apoptosis index and location of FLK1 phosphorylation and western blot studies of lung explants were performed to define the signaling pathways that mediate the protective effects of VEGF. RESULTS: Heparin-binding VEGF isoforms (VEGF164/Vegf165 and VEGF188) but not Vegf121 selectively reduced epithelial apoptosis and partially rescued lung bud branching and growth. These protective effects required NRP1-dependent FLK1 activation in endothelial cells. Analysis of downstream signaling pathways demonstrated that the VEGF-mediated anti-apoptotic effects were dependent on PKC activation. CONCLUSIONS: Vegf165 activates FLK1-NRP1 signaling in endothelial cells, leading to a PKC-dependent paracrine signal that in turn inhibits epithelial cell apoptosis.


Assuntos
Heparina/metabolismo , Pulmão/metabolismo , Neuropilina-1/fisiologia , Proteína Quinase C/fisiologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Apoptose/fisiologia , Hipóxia Celular/fisiologia , Feminino , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Gravidez , Ligação Proteica/fisiologia , Isoformas de Proteínas/fisiologia , Distribuição Aleatória , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
BMC Nephrol ; 15: 133, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128003

RESUMO

BACKGROUND: A translational study in renal transplantation suggested YKL-40, a chitinase 3-like-1 gene product, plays an important role in acute kidney injury (AKI) and repair, but data are lacking about this protein in urine from native human kidneys. METHODS: This is an ancillary study to a single-center, prospective observational cohort of patients with clinically-defined AKI according to AKI Network serum creatinine criteria. We determined the association of YKL -40 ≥ 5 ng/ml, alone or combined with neutrophil gelatinase-associated lipocalin (NGAL), in urine collected on the first day of AKI with a clinically important composite outcome (progression to higher AKI stage and/or in-hospital death). RESULTS: YKL-40 was detectable in all 249 patients, but urinary concentrations were considerably lower than in previously measured deceased-donor kidney transplant recipients. Seventy-two patients (29%) progressed or died in-hospital, and YKL-40 ≥ 5 ng/ml had an adjusted odds ratio (95% confidence interval) for the outcome of 3.4 (1.5-7.7). The addition of YKL-40 to a clinical model for predicting the outcome resulted in a continuous net reclassification improvement of 29% (P = 0.04). In patients at high risk for the outcome based on NGAL concentrations in the upper quartile, YKL-40 further partitioned the cohort into moderate-risk and very high-risk groups. CONCLUSIONS: Urine YKL-40 is associated with AKI progression and/or death in hospitalized patients and improves clinically determined risk reclassification. Combining YKL-40 with other AKI biomarkers like NGAL may further delineate progression risk, though additional studies are needed to determine whether YKL-40 has general applicability and to define its association with longer-term outcomes in AKI.


Assuntos
Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/urina , Adipocinas/urina , Progressão da Doença , Hospitalização , Lectinas/urina , Injúria Renal Aguda/mortalidade , Idoso , Biomarcadores/urina , Proteína 1 Semelhante à Quitinase-3 , Estudos de Coortes , Feminino , Hospitalização/tendências , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA