Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484799

RESUMO

The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.


Assuntos
Proteínas Intrinsicamente Desordenadas , Anticorpos de Domínio Único , Proteínas tau , Humanos , Epitopos/química , Epitopos/imunologia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/imunologia , Peptídeos/química , Peptídeos/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Proteínas tau/química , Proteínas tau/imunologia
2.
Biochemistry ; 63(12): 1513-1533, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38788673

RESUMO

Glycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3ß isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site. GSK3 has also been shown to be post-translationally modified by O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation), with still unknown functions. Here, we have found that binding of Akt inhibits GSK3ß kinase activity on both primed and unprimed tau substrates. Akt-mediated Ser9 phosphorylation restores the GSK3ß kinase activity only on primed tau, thereby selectively inactivating GSK3ß toward unprimed tau protein. Additionally, we have shown that GSK3ß is highly O-GlcNAcylated at multiple sites within the kinase domain and the disordered N- and C-terminal domains, including Ser9. In contrast to Akt-mediated regulation, neither the O-GlcNAc transferase nor O-GlcNAcylation significantly alters GSK3ß kinase activity, but high O-GlcNAc levels reduce Ser9 phosphorylation by Akt. Reciprocally, Akt phosphorylation downregulates the overall O-GlcNAcylation of GSK3ß, indicating a crosstalk between both post-translational modifications. Our results indicate that specific O-GlcNAc profiles may be involved in the phosphorylation-dependent Akt-mediated regulation of GSK3ß kinase activity.


Assuntos
Glicogênio Sintase Quinase 3 beta , Proteínas Proto-Oncogênicas c-akt , Proteínas tau , Humanos , Acetilglucosamina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicosilação , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/química , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas tau/metabolismo , Proteínas tau/química
3.
Biochemistry ; 63(17): 2196-2206, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39172504

RESUMO

The identification of chemical starting points for the development of molecular glues is challenging. Here, we employed fragment screening and identified an allosteric stabilizer of the complex between 14-3-3 and a TAZ-derived peptide. The fragment binds preferentially to the 14-3-3/TAZ peptide complex and shows moderate stabilization in differential scanning fluorimetry and microscale thermophoresis. The binding site of the fragment was predicted by molecular dynamics calculations to be distant from the 14-3-3/TAZ peptide interface, located between helices 8 and 9 of the 14-3-3 protein. This site was confirmed by nuclear magnetic resonance and X-ray protein crystallography, revealing the first example of an allosteric stabilizer for 14-3-3 protein-protein interactions.


Assuntos
Proteínas 14-3-3 , Ligação Proteica , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Humanos , Cristalografia por Raios X , Sítios de Ligação , Simulação de Dinâmica Molecular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Aciltransferases/metabolismo , Aciltransferases/química
4.
J Biol Chem ; 299(8): 105004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394004

RESUMO

The resistance of gram-negative bacteria to silver ions is mediated by a silver efflux pump, which mainly relies on a tripartite efflux complex SilCBA, a metallochaperone SilF and an intrinsically disordered protein SilE. However, the precise mechanism by which silver ions are extruded from the cell and the different roles of SilB, SilF, and SilE remain poorly understood. To address these questions, we employed nuclear magnetic resonance and mass spectrometry to investigate the interplay between these proteins. We first solved the solution structures of SilF in its free and Ag+-bound forms, and we demonstrated that SilB exhibits two silver binding sites in its N and C termini. Conversely to the homologous Cus system, we determined that SilF and SilB interact without the presence of silver ions and that the rate of silver dissociation is eight times faster when SilF is bound to SilB, indicating the formation of a SilF-Ag-SilB intermediate complex. Finally, we have shown that SilE does not bind to either SilF or SilB, regardless of the presence or absence of silver ions, further corroborating that it merely acts as a regulator that prevents the cell from being overloaded with silver. Collectively, we have provided further insights into protein interactions within the sil system that contribute to bacterial resistance to silver ions.


Assuntos
Prata , Transporte Biológico , Íons/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Prata/metabolismo
5.
Anal Chem ; 96(18): 7056-7064, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38666447

RESUMO

1H-1H coupling constants are one of the primary sources of information for nuclear magnetic resonance (NMR) structural analysis. Several selective 2DJ experiments have been proposed that allow for their individual measurement at pure shift resolution. However, all of these experiments fail in the not uncommon case when coupled protons have very close chemical shifts. First, the coupling between protons with overlapping multiplets is inaccessible due to the inability of a frequency-selective pulse to invert just one of them. Second, the strong coupling condition affects the accuracy of coupling measurements involving third spins. These shortcomings impose a limit on the effectiveness of state-of-the-art experiments, such as G-SERF or PSYCHEDELIC. Here, we introduce two new and complementary selective 2DJ experiments that we coin SERFBIRD and SATASERF. These experiments overcome the aforementioned issues by utilizing the 13C satellite signals at natural isotope abundance, which resolves the chemical shift degeneracy. We demonstrate the utility of these experiments on the tetrasaccharide stachyose and the challenging case of norcamphor, for the latter achieving measurement of all JHH couplings, while only a few were accessible with PSYCHEDELIC. The new experiments are applicable to any organic compound and will prove valuable for configurational and conformational analyses.

6.
Chemistry ; 30(20): e202303255, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317623

RESUMO

RAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE. The affinities of DCC hits were validated using microscale thermophoresis. Subsequent screening against AGE2 (glyceraldehyde-modified AGE)-sRAGE (solubleRAGE) (AGE2-BSA/sRAGE) interaction using ELISA tests led to the identification of antagonists with micromolar potency. Our findings not only demonstrate the successful application of ptDCC on RAGE but also highlight its potential to address the pressing need for alternative strategies for the development of small-molecule RAGE antagonists, an area of research that has experienced a slowdown in recent years.


Assuntos
Transdução de Sinais , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/metabolismo
7.
Biochemistry ; 62(11): 1631-1642, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37167199

RESUMO

An increase in phosphorylation of the Tau protein is associated with Alzheimer's disease (AD) progression through unclear molecular mechanisms. In general, phosphorylation modifies the interaction of intrinsically disordered proteins, such as Tau, with other proteins; however, elucidating the structural basis of this regulation mechanism remains challenging. The bridging integrator-1 gene is an AD genetic determinant whose gene product, BIN1, directly interacts with Tau. The proline-rich motif recognized within a Tau(210-240) peptide by the SH3 domain of BIN1 (BIN1 SH3) is defined as 216PTPP219, and this interaction is modulated by phosphorylation. Phosphorylation of T217 within the Tau(210-240) peptide led to a 6-fold reduction in the affinity, while single phosphorylation at either T212, T231, or S235 had no effect on the interaction. Nonetheless, combined phosphorylation of T231 and S235 led to a 3-fold reduction in the affinity, although these phosphorylations are not within the BIN1 SH3-bound region of the Tau peptide. Using nuclear magnetic resonance (NMR) spectroscopy, these phosphorylations were shown to affect the local secondary structure and dynamics of the Tau(210-240) peptide. Models of the (un)phosphorylated peptides were obtained from molecular dynamics (MD) simulation validated by experimental data and showed compaction of the phosphorylated peptide due to increased salt bridge formation. This dynamic folding might indirectly impact the BIN1 SH3 binding by a decreased accessibility of the binding site. Regulation of the binding might thus not only be due to local electrostatic or steric effects from phosphorylation but also to the modification of the conformational properties of Tau.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Fosforilação , Domínios de Homologia de src , Ligação Proteica , Doença de Alzheimer/metabolismo , Peptídeos/química , Sítios de Ligação , Prolina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
Hepatology ; 75(1): 170-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387882

RESUMO

BACKGROUND AND AIMS: Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis worldwide. Its positive-strand RNA genome encodes three open reading frames (ORF). ORF1 is translated into a large protein composed of multiple domains and is known as the viral replicase. The RNA-dependent RNA polymerase (RDRP) domain is responsible for the synthesis of viral RNA. APPROACH AND RESULTS: Here, we identified a highly conserved α-helix located in the RDRP thumb subdomain. Nuclear magnetic resonance demonstrated an amphipathic α-helix extending from amino acids 1628 to 1644 of the ORF1 protein. Functional analyses revealed a dual role of this helix in HEV RNA replication and virus production, including assembly and release. Mutations on the hydrophobic side of the amphipathic α-helix impaired RNA replication and resulted in the selection of a second-site compensatory change in the RDRP palm subdomain. Other mutations enhanced RNA replication but impaired virus assembly and/or release. CONCLUSIONS: Structure-function analyses identified a conserved amphipathic α-helix in the thumb subdomain of the HEV RDRP with a dual role in viral RNA replication and infectious particle production. This study provides structural insights into a key segment of the ORF1 protein and describes the successful use of reverse genetics in HEV, revealing functional interactions between the RDRP thumb and palm subdomains. On a broader scale, it demonstrates that the HEV replicase, similar to those of other positive-strand RNA viruses, is also involved in virus production.


Assuntos
Vírus da Hepatite E/patogenicidade , Hepatite E/virologia , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/genética , Células Hep G2 , Vírus da Hepatite E/genética , Humanos , Mutação , Conformação Proteica em alfa-Hélice/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/ultraestrutura , Relação Estrutura-Atividade
9.
Mol Ther ; 30(4): 1484-1499, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35007758

RESUMO

Tau proteins aggregate into filaments in brain cells in Alzheimer's disease and related disorders referred to as tauopathies. Here, we used fragments of camelid heavy-chain-only antibodies (VHHs or single domain antibody fragments) targeting Tau as immuno-modulators of its pathologic seeding. A VHH issued from the screen against Tau of a synthetic phage-display library of humanized VHHs was selected for its capacity to bind Tau microtubule-binding domain, composing the core of Tau fibrils. This parent VHH was optimized to improve its biochemical properties and to act in the intra-cellular compartment, resulting in VHH Z70. VHH Z70 precisely binds the PHF6 sequence, known for its nucleation capacity, as shown by the crystal structure of the complex. VHH Z70 was more efficient than the parent VHH to inhibit in vitro Tau aggregation in heparin-induced assays. Expression of VHH Z70 in a cellular model of Tau seeding also decreased the aggregation-reporting fluorescence signal. Finally, intra-cellular expression of VHH Z70 in the brain of an established tauopathy mouse seeding model demonstrated its capacity to mitigate accumulation of pathological Tau. VHH Z70, by targeting Tau inside brain neurons, where most of the pathological Tau resides, provides an immunological tool to target the intra-cellular compartment in tauopathies.


Assuntos
Doença de Alzheimer , Anticorpos de Domínio Único , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Neurônios/metabolismo , Proteínas Repressoras , Tauopatias/metabolismo , Proteínas tau/genética
10.
Biochemistry ; 60(24): 1896-1908, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34096272

RESUMO

Feline immunodeficiency virus (FIV) is a veterinary infective agent for which there is currently no efficient drug available. Drugs targeting the lentivirus capsid are currently under development for the treatment of human immunodeficiency virus 1 (HIV-1). Here we describe a lead compound that interacts with the FIV capsid. This compound, 696, modulates the in vitro assembly of and stabilizes the assembled capsid protein. To decipher the mechanism of binding of this compound to the protein, we performed the first nuclear magnetic resonance (NMR) assignment of the FIV p24 capsid protein. Experimental NMR chemical shift perturbations (CSPs) observed after the addition of 696 enabled the characterization of a specific binding site for 696 on p24. This site was further analyzed by molecular modeling of the protein:compound interaction, demonstrating a strong similarity with the binding sites of existing drugs targeting the HIV-1 capsid protein. Taken together, we characterized a promising capsid-interacting compound with a low cost of synthesis, for which derivatives could lead to the development of efficient treatments for FIV infection. More generally, our strategy combining the NMR assignment of FIV p24 with NMR CSPs and molecular modeling will be useful for the analysis of future compounds targeting p24 in the quest to identify an efficient treatment for FIV.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Produtos do Gene gag/antagonistas & inibidores , Vírus da Imunodeficiência Felina/efeitos dos fármacos , Animais , Sítios de Ligação , Capsídeo/metabolismo , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/metabolismo , Gatos , Produtos do Gene gag/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Chumbo/farmacologia , Domínios Proteicos
11.
Angew Chem Int Ed Engl ; 60(48): 25428-25435, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34570415

RESUMO

The main protease (3CLp) of the SARS-CoV-2, the causative agent for the COVID-19 pandemic, is one of the main targets for drug development. To be active, 3CLp relies on a complex interplay between dimerization, active site flexibility, and allosteric regulation. The deciphering of these mechanisms is a crucial step to enable the search for inhibitors. In this context, using NMR spectroscopy, we studied the conformation of dimeric 3CLp from the SARS-CoV-2 and monitored ligand binding, based on NMR signal assignments. We performed a fragment-based screening that led to the identification of 38 fragment hits. Their binding sites showed three hotspots on 3CLp, two in the substrate binding pocket and one at the dimer interface. F01 is a non-covalent inhibitor of the 3CLp and has antiviral activity in SARS-CoV-2 infected cells. This study sheds light on the complex structure-function relationships of 3CLp and constitutes a strong basis to assist in developing potent 3CLp inhibitors.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antivirais/química , Sítios de Ligação , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Inibidores de Cisteína Proteinase/química , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica , SARS-CoV-2/química , Bibliotecas de Moléculas Pequenas/química , Células Vero
12.
J Biol Chem ; 294(35): 13171-13185, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31315928

RESUMO

Implicated in numerous human diseases, intrinsically disordered proteins (IDPs) are dynamic ensembles of interconverting conformers that often contain many proline residues. Whether and how proline conformation regulates the functional aspects of IDPs remains an open question, however. Here, we studied the disordered domain 2 of nonstructural protein 5A (NS5A-D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short structural motif (PW-turn) embedded in a proline-rich sequence, whose interaction with the human prolyl isomerase cyclophilin A (CypA) is essential for viral RNA replication. Using NMR, we show here that the PW-turn motif exists in a conformational equilibrium between folded and disordered states. We found that the fraction of conformers in the NS5A-D2 ensemble that adopt the structured motif is allosterically modulated both by the cis/trans isomerization of the surrounding prolines that are CypA substrates and by substitutions conferring resistance to cyclophilin inhibitor. Moreover, we noted that this fraction is directly correlated with HCV RNA replication efficiency. We conclude that CypA can fine-tune the dynamic ensemble of the disordered NS5A-D2, thereby regulating viral RNA replication efficiency.


Assuntos
Ciclofilina A/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Regulação Alostérica , Ciclofilina A/genética , Ciclofilina A/isolamento & purificação , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , RNA Viral/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/isolamento & purificação , Replicação Viral
13.
Proc Natl Acad Sci U S A ; 114(34): 9080-9085, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784767

RESUMO

Determining the functional relationship between Tau phosphorylation and aggregation has proven a challenge owing to the multiple potential phosphorylation sites and their clustering in the Tau sequence. We use here in vitro kinase assays combined with NMR spectroscopy as an analytical tool to generate well-characterized phosphorylated Tau samples and show that the combined phosphorylation at the Ser202/Thr205/Ser208 sites, together with absence of phosphorylation at the Ser262 site, yields a Tau sample that readily forms fibers, as observed by thioflavin T fluorescence and electron microscopy. On the basis of conformational analysis of synthetic phosphorylated peptides, we show that aggregation of the samples correlates with destabilization of the turn-like structure defined by phosphorylation of Ser202/Thr205.


Assuntos
Agregação Patológica de Proteínas , Serina/metabolismo , Treonina/metabolismo , Proteínas tau/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Fosforilação , Domínios Proteicos , Ratos Sprague-Dawley , Serina/química , Serina/genética , Treonina/química , Treonina/genética , Proteínas tau/química , Proteínas tau/genética
14.
Acta Neuropathol ; 138(4): 631-652, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31065832

RESUMO

The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Tauopatias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Memória Espacial/fisiologia , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genética
15.
J Biol Chem ; 292(44): 18024-18043, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28912275

RESUMO

Non-structural protein 5B (NS5B) is the RNA-dependent RNA polymerase that catalyzes replication of the hepatitis C virus (HCV) RNA genome and therefore is central for its life cycle. NS5B interacts with the intrinsically disordered domain 2 of NS5A (NS5A-D2), another essential multifunctional HCV protein that is required for RNA replication. As a result, these two proteins represent important targets for anti-HCV chemotherapies. Despite this importance and the existence of NS5B crystal structures, our understanding of the conformational and dynamic behavior of NS5B in solution and its relationship with NS5A-D2 remains incomplete. To address these points, we report the first detailed NMR spectroscopic study of HCV NS5B lacking its membrane anchor (NS5BΔ21). Analysis of constructs with selective isotope labeling of the δ1 methyl groups of isoleucine side chains demonstrates that, in solution, NS5BΔ21 is highly dynamic but predominantly adopts a closed conformation. The addition of NS5A-D2 leads to spectral changes indicative of binding to both allosteric thumb sites I and II of NS5BΔ21 and induces long-range perturbations that affect the RNA-binding properties of the polymerase. We compared these modifications with the short- and long-range effects triggered in NS5BΔ21 upon binding of filibuvir, an allosteric inhibitor. We demonstrate that filibuvir-bound NS5BΔ21 is strongly impaired in the binding of both NS5A-D2 and RNA. NS5A-D2 induces conformational and functional perturbations in NS5B similar to those triggered by filibuvir. Thus, our work highlights NS5A-D2 as an allosteric regulator of the HCV polymerase and provides new insight into the dynamics of NS5B in solution.


Assuntos
Hepacivirus/enzimologia , Modelos Moleculares , Oligorribonucleotídeos/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Isoleucina/química , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Oligorribonucleotídeos/química , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína/efeitos dos fármacos , Pironas/química , Pironas/metabolismo , Pironas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
16.
J Biomol NMR ; 70(1): 67-76, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218486

RESUMO

The non structural protein 5A (NS5A) regulates the replication of the hepatitis C viral RNA through a direct molecular interaction of its domain 2 (NS5A-D2) with the RNA dependent RNA polymerase NS5B. Because of conflicting data in the literature, we study here this molecular interaction using fluorinated versions of the NS5A-D2 protein derived from the JFH1 Hepatitis C Virus strain. Two methods to prepare fluorine-labelled NS5A-D2 involving the biosynthetic incorporation of a 19F-tryptophan using 5-fluoroindole and the posttranslational introduction of fluorine by chemical conjugation of 2-iodo-N-(trifluoromethyl)acetamide with the NS5A-D2 cysteine side chains are presented. The dissociation constants (KD) between NS5A-D2 and NS5B obtained with these two methods are in good agreement, and yield values comparable to those derived previously from a surface plasmon resonance study. We compare benefits and limitations of both labeling methods to study the interaction between an intrinsically disordered protein and a large molecular target by 19F NMR.


Assuntos
Hepacivirus/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas não Estruturais Virais/química , Flúor , Imagem por Ressonância Magnética de Flúor-19/métodos , Marcação por Isótopo/métodos
17.
Biochim Biophys Acta Gen Subj ; 1862(4): 825-835, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29337275

RESUMO

Lamin B Receptor (LBR) is an integral protein of the interphase inner nuclear membrane that is implicated in chromatin anchorage to the nuclear envelope. Phosphorylation of a stretch of arginine-serine (RS) dipeptides in the amino-terminal nucleoplasmic domain of LBR regulates the interactions of the receptor with other nuclear proteins, DNA and RNA and thus modulates tethering of heterochromatin to the nuclear envelope. While phosphorylation has been extensively studied, very little is known about other post-translational modifications of the protein. There is only one report on the O-ß-linked N-acetyl-glucosaminylation (O-GlcNAcylation) of a serine residue downstream of the RS domain of rat LBR. In the present study we identify additional O-GlcNAcylation sites by using as substrates of O-ß-N-acetylglucosaminyltransferase (OGT) a set of peptides containing the entire LBR RS domain or parts of it as well as flanking sequences. The in vitro activity of OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Furthermore, we provide evidence that O-GlcNAcylation hampers DNA binding while it marginally affects RS domain phosphorylation mediated by SRPK1, Akt2 and cdk1 kinases. GENERAL SIGNIFICANCE: Our methodology providing a quantitative description of O-GlcNAc patterns based on a combination of mass spectrometry and high resolution NMR spectroscopy on short peptide substrates allows subsequent functional analyses. Hence, our approach is of general interest to a wide audience of biologists aiming at deciphering the functional role of O-GlcNAc glycosylation and its crosstalk with phosphorylation.


Assuntos
Acetilglucosamina/metabolismo , DNA/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , DNA/genética , Glicosilação , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Homologia de Sequência de Aminoácidos , Perus , Receptor de Lamina B
18.
Biochemistry ; 56(24): 3029-3048, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28535337

RESUMO

Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a RNA-binding phosphoprotein composed of a N-terminal membrane anchor (AH), a structured domain 1 (D1), and two intrinsically disordered domains (D2 and D3). The knowledge of the functional architecture of this multifunctional protein remains limited. We report here that NS5A-D1D2D3 produced in a wheat germ cell-free system is obtained under a highly phosphorylated state. Its NMR analysis revealed that these phosphorylations do not change the disordered nature of D2 and D3 domains but increase the number of conformers due to partial phosphorylations. By combining NMR and small angle X-ray scattering, we performed a comparative structural characterization of unphosphorylated recombinant D2 domains of JFH1 (genotype 2a) and the Con1 (genotype 1b) strains produced in Escherichia coli. These analyses highlighted a higher intrinsic folding of the latter, revealing the variability of intrinsic conformations in HCV genotypes. We also investigated the effect of D2 mutations conferring resistance of HCV replication to cyclophilin A (CypA) inhibitors on the structure of the recombinant D2 Con1 mutants and their binding to CypA. Although resistance mutations D320E and R318W could induce some local and/or global folding perturbation, which could thus affect the kinetics of conformer interconversions, they do not significantly affect the kinetics of CypA/D2 interaction measured by surface plasmon resonance (SPR). The combination of all our data led us to build a model of the overall structure of NS5A, which provides a useful template for further investigations of the structural and functional features of this enigmatic protein.


Assuntos
Antivirais/farmacologia , Ciclosporina/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Mutação , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica
19.
J Biol Chem ; 291(14): 7742-53, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26858248

RESUMO

Tau neuronal protein has a central role in neurodegeneration and is implicated in Alzheimer disease development. Abnormal phosphorylation of Tau impairs its interaction with other proteins and is associated with its dysregulation in pathological conditions. Molecular mechanisms leading to hyperphosphorylation of Tau in pathological conditions are unknown. Here, we characterize phosphorylation of Tau by extracellular-regulated kinase (ERK2), a mitogen-activated kinase (MAPK) that responds to extracellular signals. Analysis ofin vitrophosphorylated Tau by activated recombinant ERK2 with nuclear magnetic resonance spectroscopy (NMR) reveals phosphorylation of 15 Ser/Thr sites.In vitrophosphorylation of Tau using rat brain extract and subsequent NMR analysis identifies the same sites. Phosphorylation with rat brain extract is known to transform Tau into an Alzheimer disease-like state. Our results indicate that phosphorylation of Tau by ERK2 alone is sufficient to produce the same characteristics. We further investigate the mechanism of ERK2 phosphorylation of Tau. Kinases are known to recognize their protein substrates not only by their specificity for a targeted Ser or Thr phosphorylation site but also by binding to linear-peptide motifs called docking sites. We identify two main ERK2 docking sites in Tau sequence using NMR. Our results suggest that ERK2 dysregulation in Alzheimer disease could lead to abnormal phosphorylation of Tau resulting in the pathology of the disease.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/química , Proteínas tau/química , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Motivos de Aminoácidos , Animais , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Estrutura Terciária de Proteína , Ratos , Proteínas tau/genética , Proteínas tau/metabolismo
20.
Nucleic Acids Res ; 43(14): 7110-21, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26130716

RESUMO

The N-terminal acidic transactivation domain (TAD) of ERM/ETV5 (ERM38-68), a PEA3 group member of Ets-related transcription factors, directly interacts with the ACID/PTOV domain of the Mediator complex subunit MED25. Molecular details of this interaction were investigated using nuclear magnetic resonance (NMR) spectroscopy. The TAD is disordered in solution but has a propensity to adopt local transient secondary structure. We show that it folds upon binding to MED25 and that the resulting ERM-MED25 complex displays characteristics of a fuzzy complex. Mutational analysis further reveals that two aromatic residues in the ERM TAD (F47 and W57) are involved in the binding to MED25 and participate in the ability of ERM TAD to activate transcription. Mutation of a key residue Q451 in the VP16 H1 binding pocket of MED25 affects the binding of ERM. Furthermore, competition experiments show that ERM and VP16 H1 share a common binding interface on MED25. NMR data confirms the occupancy of this binding pocket by ERM TAD. Based on these experimental data, a structural model of a functional interaction is proposed. This study provides mechanistic insights into the Mediator-transactivator interactions.


Assuntos
Proteínas de Ligação a DNA/química , Complexo Mediador/química , Transativadores/química , Fatores de Transcrição/química , Proteínas de Ligação a DNA/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA