RESUMO
Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.
Assuntos
Homeostase , Regeneração , Telomerase , Telomerase/metabolismo , Telomerase/genética , Animais , Homeostase/genética , Homeostase/efeitos da radiação , Camundongos , Regeneração/efeitos da radiação , Regeneração/genética , Humanos , Glândulas Salivares/efeitos da radiação , Glândulas Salivares/metabolismo , Glândulas Salivares/citologia , Proliferação de Células/efeitos da radiação , Proliferação de Células/genética , Sobrevivência Celular/efeitos da radiação , Sobrevivência Celular/genética , Glândula Submandibular/efeitos da radiação , Glândula Submandibular/metabolismo , Células-Tronco/efeitos da radiação , Células-Tronco/metabolismo , Células-Tronco/citologia , Radioterapia/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Células CultivadasRESUMO
Zwitterionic membranes demonstrate excellent antifouling property in water purification. The covalent organic frameworks (COFs), due to the ordered channels and abundant organic functional groups, have distinct superiority in constructing zwitterionic surfaces.Here, the zwitterionic COF membrane is prepared with precise framework structures and uniform charge distribution. The negatively charged 4,4'-diaminobiphenyl-2,2'-sisulphonic acid sodium (SA) and positively charged ethidium bromide (EB) fragments are used to react with 1,3,5-triformylphloroglucinol (TP) at the gas-liquid interface to prepare zwitterionic COF membrane. The complementary charged fragments in the inter-layer and inner-layer facilitate the formation of continuous and tight hydration layer on the membrane surface and pore walls to resist the adsorption of pollutants. The zwitterionic COF membrane effectively resists both negatively charged bovine serum albumin and positively charged lysozyme pollutants with flux recovery ratio (FRR) of 97% and 85%, respectively. Furthermore, the regular nano-channels and balanced interactions between water and surface/pore walls of the zwitterionic membrane result in outstanding permeability of up to 146 L m-2 h-1 bar-1 and excellent dye/salt separation selectivity. The water permeation and antifouling mechanism of membranes are elucidated by experimental and molecular dynamics calculation. Zwitterionic COF membranes can find promising applications in preparing high-performance antifouling membranes.
RESUMO
Carbon-based single-atom catalysts (SACs) have been gradually introduced in heterogeneous catalytic ozonation (HCO), but the interface mechanism of O3 activation on the catalyst surface is still ambiguous, especially the effect of a surface hydroxyl group (M-OH) at metal sites. Herein, we combined theoretical calculations with experimental verifications to comprehensively investigate the O3 activation mechanisms on a series of conventional SAC structures with N-doped nanocarbon substrates (MN4-NCs, where M = Mn, Fe, Co, Ni). The synergetic manipulation effect of the metal atom and M-OH on O3 activation pathways was paid particular attention. O3 tends to directly interact with the metal atom on MnN4-NC, FeN4-NC, and NiN4-NC catalysts, among which MnN4-NC has the best catalytic activity for its relatively lower activation energy barrier of O3 (0.62 eV) and more active surface-adsorbed oxygen species (Oads). On the CoN4-NC catalyst, direct interaction of O3 with the metal site is energetically infeasible, but O3 can be activated to generate Oads or HO2 species from direct or indirect participation of M-OH sites. The experimental results showed that 90.7 and 82.3% of total organic carbon (TOC) was removed within 40 min during catalytic ozonation of p-hydroxybenzoic acid with MnN4-NC and CoN4-NC catalysts, respectively. Phosphate quenching, catalyst characterization, and EPR measurement further supported the theoretical prediction. This contribution provides fundamental insights into the O3 activation mechanism on SACs, and the methods and ideals could be helpful for future studies of environmental catalysis.
Assuntos
Ozônio , Ozônio/química , CatáliseRESUMO
We have designed a novel device that facilitates the accurate placement of occipital ventricular catheters in ventriculoperitoneal shunt procedures. After 7 years of clinical use, this device has consistently demonstrated its simplicity, user-friendliness, and effectiveness. It enables both experienced surgeons and novices to confidently and accurately position the ventricular catheter to a satisfactory location.
RESUMO
PURPOSE: To introduce a method of cranial bone reconstruction for cranial burst fractures and early-stage growing skull fractures, named bone flap binding and transposition. METHODS: Cranial burst fractures, severe head injuries predominantly observed in infants, are characterized by widely diastatic skull fractures coupled with acute extracranial cerebral herniation beneath an intact scalp through ruptured dura mater. These injuries can develop into growing skull fractures. This study included two cases to illustrate the procedure, with a particular focus on the bone steps in managing these conditions. The medical history, clinical presentation, surgical procedures, and postoperative follow-up were retrospectively studied. The details of the surgical procedure were described. RESULTS: The method of bone reconstruction, named bone flap binding and transposition, was applied after the lacerated dural repair. Two bone pieces were combined to eliminate the diastatic bone defect and then fixed by an absorbable cranial fixation clip and bound by sutures. The combined bone flap was repositioned into the bone window, completely covering the area of the original dural laceration. Subsequently, the bone defect was transferred to the area of normal dura. The postoperative courses for the two infants were uneventful. Follow-up CT scans revealed new bone formation at the previous bone defect and no progressive growing skull fracture. The major cranial defects had disappeared, leaving only small residual defects at the corners of the skull bone window, which required further recovery and did not affect the solidity of the skull. CONCLUSION: Bone flap binding and transposition provide a straightforward, cost-effective, and reliable method for cranial bone reconstruction of cranial burst fractures and early-stage growing skull fractures. This method has taken full advantage of the small infant's dura osteogenic potential without the need for artificial or metallic bone repair materials. The effectiveness of the method needs further validation with more cases in the future.
Assuntos
Procedimentos de Cirurgia Plástica , Fraturas Cranianas , Retalhos Cirúrgicos , Humanos , Lactente , Procedimentos de Cirurgia Plástica/métodos , Estudos Retrospectivos , Crânio/cirurgia , Crânio/lesões , Fraturas Cranianas/cirurgia , Tomografia Computadorizada por Raios XRESUMO
PURPOSE: Children diagnosed with suprasellar arachnoid cysts often concurrently have hydrocephalus. This study aims to classify the relationship between suprasellar arachnoid cysts and hydrocephalus, discussing surgical strategies-shunting or neuroendoscopic approaches-and their sequence, based on this classification. METHODS: A retrospective analysis was conducted on 14 patients diagnosed with suprasellar arachnoid cysts and hydrocephalus, treated surgically by the first author between January 2016 and December 2020. Clinical features, radiological findings, surgical strategies, and outcomes were reviewed. The classification of the relationship between the suprasellar arachnoid cysts and hydrocephalus was developed and illustrated with specific cases. Recommendations for future surgical management based on this classification are provided. RESULTS: We classified the relationship between suprasellar arachnoid cysts and hydrocephalus into three categories. SACH-R1, the direct type, represents cases where the cysts cause obstructive hydrocephalus. Here, neuroendoscopic ventriculocystocisternostomy (VCC) effectively treats both conditions. SACH-R2, the juxtaposed type, involves concurrent occurrences of cysts and hydrocephalus without a causative link. This is further subdivided into SACH-R2a, where acute progressive communicating hydrocephalus coexists with the cyst, initially managed with a ventriculoperitoneal shunt, followed by VCC upon stabilization of hydrocephalus; and SACH-R2b, where the cyst coexists with chronic stable communicating hydrocephalus, first addressed with VCC, followed by monitoring and potential secondary shunting if needed. Key factors differentiating SACH-R2a from SACH-R2b include the patient's age, imaging signs of fourth ventricle and cisterna magna enlargement, and the rapid progression or chronic stability and severity of hydrocephalus symptoms. SACH-R3, the reverse type, describes scenarios where shunting for hydrocephalus leads to the development or enlargement of the cyst, managed via neuroendoscopic VCC with precautions to prevent infections in existing shunt systems. CONCLUSION: The simultaneous presence of suprasellar arachnoid cysts and hydrocephalus requires a nuanced understanding of their complex relationship for optimal surgical intervention. The analysis and classification of their relationship are crucial for determining appropriate surgical approaches, including the choice and sequence of shunting and neuroendoscopic techniques. Treatment should be tailored to the specific type identified, rather than blindly opting for neuroendoscopy. Particularly for SACH-R2a cases, we recommend initial ventriculoperitoneal shunting.
Assuntos
Cistos Aracnóideos , Hidrocefalia , Neuroendoscopia , Humanos , Cistos Aracnóideos/cirurgia , Cistos Aracnóideos/complicações , Cistos Aracnóideos/diagnóstico por imagem , Cistos Aracnóideos/classificação , Hidrocefalia/cirurgia , Hidrocefalia/etiologia , Hidrocefalia/diagnóstico por imagem , Masculino , Feminino , Estudos Retrospectivos , Neuroendoscopia/métodos , Pré-Escolar , Criança , Lactente , Adolescente , Ventriculostomia/métodosRESUMO
We present a case of a child with a suprasellar arachnoid cyst and hydrocephalus who developed a massive traumatic epidural hematoma following a fall. This represents the first reported case of such a condition. The case is characterized by a progressive increase in hemorrhage leading to a massive hematoma, yet with relatively mild clinical symptoms. The hemorrhage originated from extensive blood seepage from the dura mater. Intraoperative hemostasis was challenging, and there was a large residual cavity of the epidural hematoma without repositioning of brain tissue after removal of the hematoma. Surgical measures such as extensive continuous compression hemostasis with Surgicel, the half-suspension technique, and continuous external drainage were employed to address these challenges. A second-stage surgery for the treatment of the suprasellar arachnoid cyst was performed 1.5 months after hematoma evacuation, utilizing neuroendoscopic ventriculocisternostomy (VCC). We recommend that for patients with traumatic brain injury and hydrocephalus, especially those with skull fractures or minimal intracranial hemorrhage, relying solely on clinical symptom observation and monitoring is insufficient. Timely and close monitoring with cranial CT is crucial for the early detection of progressive intracranial hemorrhage.
Assuntos
Cistos Aracnóideos , Hematoma Epidural Craniano , Hidrocefalia , Humanos , Cistos Aracnóideos/cirurgia , Cistos Aracnóideos/complicações , Cistos Aracnóideos/diagnóstico , Cistos Aracnóideos/diagnóstico por imagem , Hidrocefalia/cirurgia , Hidrocefalia/etiologia , Hidrocefalia/diagnóstico , Hematoma Epidural Craniano/cirurgia , Hematoma Epidural Craniano/etiologia , Hematoma Epidural Craniano/diagnóstico , Hematoma Epidural Craniano/diagnóstico por imagem , Masculino , Resultado do Tratamento , Acidentes por Quedas , Tomografia Computadorizada por Raios X , CriançaRESUMO
To determine the priority control sources, an approach was proposed to evaluate the source-specific contribution to health risks from inhaling PM2.5-bound heavy metals (PBHMs). A total of 482 daily PM2.5 samples were collected from urban and suburban areas of Beijing, China, between 2018 and 2019. In addition to the PMF-PSCF model, a Pb isotopic IsoSource model was built for more reliable source apportionment. By using the comprehensive indicator of disability-adjusted life years (DALYs), carcinogenic and noncarcinogenic health risks could be compared on a unified scale. The study found that the annual average concentrations of the total PBHMs were significantly higher in suburban areas than in urban areas, with significantly higher concentrations during the heating season than during the nonheating season. Comprehensive dust accounted for the largest contribution to the concentration of PBHMs, while coal combustion contributed the most to the DALYs associated with PBHMs. These results suggest that prioritizing the control of coal combustion could effectively reduce the disease burden associated with PBHMs, leading to notable public health benefits.
Assuntos
Poluentes Atmosféricos , Metais Pesados , Pequim , Poluentes Atmosféricos/análise , Material Particulado/análise , Anos de Vida Ajustados por Deficiência , Monitoramento Ambiental/métodos , China , Estações do Ano , Carvão Mineral/análise , Medição de RiscoRESUMO
Understanding the mechanism of the rate-dependent electrochemical performance degradation in cathodes is crucial to developing fast charging/discharging cathodes for Li-ion batteries. Here, taking Li-rich layered oxide Li1.2 Ni0.13 Co0.13 Mn0.54 O2 as the model cathode, the mechanisms of performance degradation at low and high rates are comparatively investigated from two aspects, the transition metal (TM) dissolution and the structure change. Quantitative analyses combining spatial-resolved synchrotron X-ray fluorescence (XRF) imaging, synchrotron X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques reveal that low-rate cycling leads to gradient TM dissolution and severe bulk structure degradation within the individual secondary particles, and especially the latter causes lots of microcracks within secondary particles, and becomes the main reason for the fast capacity and voltage decay. In contrast, high-rate cycling leads to more TM dissolution than low-rate cycling, which concentrates at the particle surface and directly induces the more severe surface structure degradation to the electrochemically inactive rock-salt phase, eventually causing a faster capacity and voltage decay than low-rate cycling. These findings highlight the protection of the surface structure for developing fast charging/discharging cathodes for Li-ion batteries.
RESUMO
Massive anions in high saline wastewater are primary factors that restricted the efficiency of pollutant degradation in advanced oxidation processes (AOPs). Herein, we reported the influence laws of different anions at high concentration on the electron-transfer process in the activation of persulfate, and especially, the sulfate anion exhibited the excellent promotion effect. Depending on the ionic charge, polarizability, and size, the anions exerted diverse effects on the dispersed phase and zeta potential of carbonaceous catalysts, which further embodied in the removal of pollutants. Based on the differences of reaction rate constant in water solution and high saline solution, the order was ClO4- < NO3- < Cl- < SO42- < CO32-, obeying the Hofmeister series. The enhancement of the sulfate anion was widely confirmed with different carbonaceous catalysts and pollutants with various structures. It could be attributed to the higher oxidation capacity, the faster interfacial electron transfer, and the better catalyst dispersion in the high sulfate environment. On the other hand, the decrease of zeta potential of the catalyst induced by sulfate reinforced the electrostatic attraction or repulsion with pollutants, which caused the selectivity of the sulfate promotion effect. Overall, this study provides new insights into the mechanism of influence of anions on AOPs, which refreshed the cognition of the role of sulfate on pollutant degradation, and helps guide the treatment design of high salinity wastewater.
Assuntos
Sulfatos , Poluentes Químicos da Água , Sulfatos/química , Águas Residuárias , Ânions , Oxirredução , Poluentes Químicos da Água/químicaRESUMO
In this work, we demonstrate for the first time the abatement of sulfamethoxazole (SMX) induced by stabilized ortho-semiquinone radicals (o-SQâ¢-) in the MnO2-mediated system in the presence of humic acid. To evaluate the performance of different MnO2/mediator systems, 16 mediators are examined for their effects on MnO2 reactions with SMX. The key role of the bidentate Mn(II)-o-SQ⢠complex and MnO2 surface in stabilizing SQâ¢- is revealed. To illustrate the formation of the Mn(II)-o-SQ⢠complex, electron spin resonance, cyclic voltammetry, and mass spectra were used. To demonstrate the presence of o-SQ⢠on the MnO2 surface, EDTA was used to quench Mn(II)-o-SQâ¢. The high stability of o-SQâ¢- on the MnO2 surface is attributed to the higher potential of o-SQâ¢- (0.9643 V) than the MnO2 surface (0.8598 V) at pH 7.0. The SMX removal rate constant by different stabilized o-SQ⢠at pH 7.0 ranges from 0.0098 to 0.2252 min-1. The favorable model is the rate constant ln (kobs, 7.0) = 6.002EHOMO(o-Qred) + 33.744(ELUMO(o-Q) - EHOMO(o-Qred)) - 32.800, whose parameters represent the generation and reactivity of o-SQâ¢, respectively. Moreover, aniline and cystine are competitive substrates for SMX in coupling o-SQâ¢-. Due to the abundance of humic constituents in aquatic environments, this finding sheds light on the low-oxidant-demand, low-carbon, and highly selective removal of sulfonamide antibiotics.
Assuntos
Substâncias Húmicas , Sulfametoxazol , Manganês , Óxidos , Compostos de ManganêsRESUMO
N-doped defective nanocarbon (N-DNC) catalysts have been widely studied due to their exceptional catalytic activity in many applications, but the O3 activation mechanism in catalytic ozonation of N-DNCs has yet to be established. In this study, we systematically mapped out the detailed reaction pathways of O3 activation on 10 potential active sites of 8 representative configurations of N-DNCs, including the pyridinic N, pyrrolic N, N on edge, and porphyrinic N, based on the results of density functional theory (DFT) calculations. The DFT results indicate that O3 decomposes into an adsorbed atomic oxygen species (Oads) and an 3O2 on the active sites. The atomic charge and spin population on the Oads species indicate that it may not only act as an initiator for generating reactive oxygen species (ROS) but also directly attack the organics on the pyrrolic N. On the N site and C site of the N4V2 system (quadri-pyridinic N with two vacancies) and the pyridinic N site at edge, O3 could be activated into 1O2 in addition to 3O2. The N4V2 system was predicted to have the best activity among the N-DNCs studied. Based on the DFT results, machine learning models were utilized to correlate the O3 activation activity with the local and global properties of the catalyst surfaces. Among the models, XGBoost performed the best, with the condensed dual descriptor being the most important feature.
RESUMO
Hydroxyl radical-dominated oxidation in catalytic ozonation is, in particular, important in water treatment scenarios for removing organic contaminants, but the mechanism about ozone-based radical oxidation processes is still unclear. Here, we prepared a series of transitional metal (Co, Mn, Ni) single-atom catalysts (SACs) anchored on graphitic carbon nitride to accelerate ozone decomposition and produce highly reactive ·OH for oxidative destruction of a water pollutant, oxalic acid (OA). We experimentally observed that, depending on the metal type, OA oxidation occurred dominantly either in the bulk phase, which was the case for the Mn catalyst, or via a combination of the bulk phase and surface reaction, which was the case for the Co catalyst. We further performed density functional theory simulations and in situ X-ray absorption spectroscopy to propose that the ozone activation pathway differs depending on the oxygen binding energy of metal, primarily due to differential adsorption of O3 onto metal sites and differential coordination configuration of a key intermediate species, *OO, which is collectively responsible for the observed differences in oxidation mechanisms and kinetics.
Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Radical Hidroxila/química , Oxirredução , Metais , Catálise , Ácido Oxálico/química , Poluentes Químicos da Água/química , Purificação da Água/métodosRESUMO
Photocatalytic ozonation (light/O3/photocatalyst), an independent advanced oxidation process (AOP) proposed in 1996, has demonstrated over the past two decades its robust oxidation capacity and potential for practical wastewater treatment using sunlight and air (source of ozone). However, its development is restricted by two main issues: (i) a lack of breakthrough catalysts working under visible light (42-43% of sunlight in energy) as well as ambiguous property-activity relationships and (ii) unclear fundamental reasons underlying its high yield of hydroxyl radicals (â¢OH). In this Account, we summarize our substantial contributions to solving these issues, including (i) new-generation graphitic carbon nitride (g-C3N4) catalysts with excellent performance for photocatalytic ozonation under visible light, (ii) mechanisms of charge carrier transfer and reactive oxygen species (ROS) evolution, (iii) property-activity relationships, and (iv) chemical and working stabilities of g-C3N4 catalysts. On this basis, the principles/directions for future catalyst design/optimization are discussed, and a new concept of integrating solar photocatalytic ozonation with catalytic ozonation in one plant for continuous treatment of wastewater regardless of sunlight availability is proposed.The story starts from our finding that bulk/nanosheet/nanoporous g-C3N4 triggers a strong synergy between visible light (vis) and ozone, causing efficient mineralization of a wide variety of organic pollutants. Taking bulk g-C3N4 as an example, photocatalytic ozonation (vis/O3/g-C3N4) causes the mineralization of oxalic acid (a model pollutant) at a rate 95.8 times higher than the sum of photocatalytic oxidation (vis/O2/g-C3N4) and ozonation. To unravel this synergism, we developed a method based on in situ electron paramagnetic resonance (EPR) spectroscopy coupled with an online spin trapping technique for monitoring under realistic aqueous conditions the generation and transfer of photoinduced charge carriers and their reaction with dissolved O3/O2 to form ROS. The presence of only 2.1 mol % O3 in the inlet O2 gas stream can trap 1-2 times more conduction band electrons than pure O2 and shifts the reaction pathway from inefficient three-electron reduction of O2 (O2 â â¢O2- â HO2⢠â H2O2 â â¢OH) to more efficient one-electron reduction of O3 (O3 â â¢O3- â HO3⢠â â¢OH), thereby increasing the yield of â¢OH by a factor of 17. Next, we confirmed band structure as a decisive factor for catalytic performance and established a new concept for resolving this relationship, involving "the number of reactive charge carriers". An optimum balance between the number and reducing ability of photoinduced electrons, which depends on the interplay between the band gap and the conduction band edge potential, is a key property for highly active g-C3N4 catalysts. Furthermore, we demonstrated that g-C3N4 is chemically stable toward O3 and â¢O2- but that â¢OH can tear and oxidize its heptazine units to form cyameluric acid and further release nitrates into the aqueous environment. Fortunately, â¢OH usually attacks organic pollutants in wastewater in preference to g-C3N4, thus preserving the working stability of g-C3N4 and the steady operation of photocatalytic ozonation. This AOP, which serves as an in situ â¢OH manufacturer, would be of interest to a broad chemistry world since â¢OH radicals are active species not only for environmental applications but also for organic synthesis, polymerization, zeolite synthesis, and protein footprinting.
RESUMO
Photoinduced interfacial release of volatile organic compounds (VOCs) from surfactants receives emerging concerns. Here, we investigate the photoreaction of 1-nonanol (NOL) as a model surfactant at the air-water interface, especially for the important role of 1O2 in the formation of VOCs. The production of VOCs is real-time quantitated. The results indicate that the oxygen content apparently affects the total yields of VOCs during the photoreaction of interfacial NOL. The photoactivity of NOL is about 8 times higher under air than that under nitrogen, which is mainly attributed to the generation of 1O2. Additionally, the production of VOCs increased by about 4 times with the existence of the air-water interface. Quenching experiments of 1O2 also illustrate the contribution of 1O2 to VOC formation, which could reach more than 95% during photoirradiation of NOL. Furthermore, density functional theory calculations show that 1O2 generated via energy transfer of photosensitizers can abstract two hydrogen atoms from a fatty alcohol molecule. The energy barrier of this reaction is 72.3 kJ/mol, and its reaction rate coefficient is about 2.742 s-1 M-1. 1O2 significantly promotes photoinduced oxidation of fatty alcohols and VOC formation through hydrogen abstraction, which provides a new insight into the interfacial photoreaction.
Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Álcoois Graxos , Oxirredução , Oxigênio Singlete , ÁguaRESUMO
Recovering nitrogen from source-separated urine is an important part of the sustainable nitrogen management. A novel bipolar membrane electrodialysis with membrane contactor (BMED-MC) process is demonstrated here for efficient recovery of ammonia from synthetic source-separated urine (â¼3772 mg N L-1). In a BMED-MC process, electrically driven water dissociation in a bipolar membrane simultaneously increases the pH of the urine stream and produces an acid stream for ammonia stripping. With the increased pH of urine, ammonia transports across the gas-permeable membrane in the membrane contactor and is recovered by the acid stream as ammonium sulfate that can be directly used as fertilizer. Our results obtained using batch experiments demonstrate that the BMED-MC process can achieve 90% recovery. The average ammonia flux and the specific energy consumption can be regulated by varying the current density. At a current density of 20 mA cm-2, the energy required to achieve a 67.5% ammonia recovery in a 7 h batch mode is 92.8 MJ kg-1 N for a bench-scale system with one membrane stack and can approach 25.8 MJ kg-1 N for large-scale systems with multiple membrane stacks, with an average ammonia flux of 2.2 mol m-2 h-1. Modeling results show that a continuous BMED-MC process can achieve a 90% ammonia recovery with a lower energy consumption (i.e., 12.5 MJ kg-1 N). BMED-MC shows significant potential for ammonia recovery from source-separated urine as it is relatively energy-efficient and requires no external acid solution.
Assuntos
Amônia , Nitrogênio , Fertilizantes , UrinaRESUMO
Xerostomia (dry mouth) is the most common side effect of radiation therapy in patients with head and neck cancer and causes difficulty speaking and swallowing. Since aldehyde dehydrogenase 3A1 (ALDH3A1) is highly expressed in mouse salivary stem/progenitor cells (SSPCs), we sought to determine the role of ALDH3A1 in SSPCs using genetic loss-of-function and pharmacologic gain-of-function studies. Using DarkZone dye to measure intracellular aldehydes, we observed higher aldehyde accumulation in irradiated Aldh3a1-/- adult murine salisphere cells and in situ in whole murine embryonic salivary glands enriched in SSPCs compared with wild-type glands. To identify a safe ALDH3A1 activator for potential clinical testing, we screened a traditional Chinese medicine library and isolated d-limonene, commonly used as a food-flavoring agent, as a single constituent activator. ALDH3A1 activation by d-limonene significantly reduced aldehyde accumulation in SSPCs and whole embryonic glands, increased sphere-forming ability, decreased apoptosis, and improved submandibular gland structure and function in vivo after radiation. A phase 0 study in patients with salivary gland tumors showed effective delivery of d-limonene into human salivary glands following daily oral dosing. Given its safety and bioavailability, d-limonene may be a good clinical candidate for mitigating xerostomia in patients with head and neck cancer receiving radiation therapy.
Assuntos
Aldeído Desidrogenase/metabolismo , Aldeídos/metabolismo , Cicloexenos/farmacologia , Radioterapia/efeitos adversos , Glândulas Salivares/metabolismo , Terpenos/farmacologia , Xerostomia/metabolismo , Animais , Apoptose/efeitos dos fármacos , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Limoneno , Medicina Tradicional Chinesa/métodos , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/efeitos da radiação , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/metabolismo , Xerostomia/tratamento farmacológicoRESUMO
This study investigated a combined low-thermal and CaO2 pretreatment to enhance the volatile fatty acid (VFA) production from waste activated sludge (WAS). The fermentative product was added to a sequencing batch reactor (SBR) as an external carbon source to enhance nitrogen removal. The results showed that the combined pretreatment improved WAS solubilization, releasing more biodegradable substrates, such as proteins and polysaccharides, from TB-EPS to LB-EPS and S-EPS. The maximum VFA production of 3529 ± 188 mg COD/L was obtained in the combined pretreatment (0.2 g CaO2/g VS + 70 °C for 60 min), which was 2.1 and 1.4-fold of that obtained from the sole low-thermal pretreatment and the control test, respectively. Consequently, when the fermentative liquid was added as an external denitrification carbon source, the effluent total nitrogen decreased to Class A of the discharge standard for pollutants in rural wastewater treatment plants in most areas of China.
Assuntos
Nitrogênio , Esgotos , Reatores Biológicos , Desnitrificação , Ácidos Graxos Voláteis , Fermentação , PeróxidosRESUMO
In membrane distillation (MD), complicated feed water with amphiphilic contaminants induces fouling/wetting of the MD membrane and can even lead to process failure. This study reports a facile approach to fabricate robust and self-healing hybrid amphiphobic membranes for anti-surfactant-wetting MD based on the ultra-low surface energy of fluorinated polyhedral oligomeric silsesquioxanes (F-POSS) and its thermal induced motivation and rotation. The thermal treatment makes the membranes achieving amphiphobicity at a very low cost of F-POSS (13.04 wt.%), which is about 1/3 of without thermal treatment. The prepared membrane exhibits excellent amphiphobicity, i.e. ethanol contact angle of 120.3°, without using environmentally toxic fluorinated nanoparticles. Robust MD performance was observed for the amphiphobic membrane in concentrated sodium dodecyl sulfate (SDS) feed solutions. Furthermore, the fabricated membrane exhibited stable amphiphobicity even in extreme environments, including strong acid or alkaline solutions. In the event of a damaged or abraded membrane surface where the F-POSS can be removed, the amphiphobic membrane exhibits self-healing ability with additional thermal treatment. This simple approach without the use of nanoparticles provides an environmentally friendly way for fabrication of amphiphobic membranes for anti-surfactant-wetting membrane distillation.
Assuntos
Nanopartículas , Purificação da Água , Destilação , Membranas , Membranas Artificiais , TensoativosRESUMO
Heterogeneous catalytic ozonation (HCO) processes have been widely studied for water purification. The reaction mechanisms of these processes are very complicated because of the simultaneous involvement of gas, solid, and liquid phases. Although typical reaction mechanisms have been established for HCO, some of them are only appropriate for specific systems. The divergence and deficiency in mechanisms hinders the development of novel active catalysts. This critical review compares the various existing mechanisms and categorizes the catalytic oxidation of HCO into radical-based oxidation and nonradical oxidation processes with an in-depth discussion. The catalytic active sites and adsorption behaviors of O3 molecules on the catalyst surface are regarded as the key clues for further elucidating the O3 activation processes, evolution of reactive oxygen species (ROS) or organic oxidation pathways. Moreover, the detection methods of the ROS produced in both types of oxidations and their roles in the destruction of organics are reviewed with discussion of some specific problems among them, including the scavengers selection, experiment results analysis as well as some questionable conclusions. Finally, alternative strategies for the systematic investigation of the HCO mechanism and the prospects for future studies are envisaged.