RESUMO
Hydroformylation is an industrial process for the production of aldehydes from alkenes1,2. Regioselective hydroformylation of propene to high-value n-butanal is particularly important, owing to a wide range of bulk applications of n-butanal in the manufacture of various necessities in human daily life3. Supported rhodium (Rh) hydroformylation catalysts, which often excel in catalyst recyclability, ease of separation and adaptability for continuous-flow processes, have been greatly exploited4. Nonetheless, they usually consist of rotationally flexible and sterically unconstrained Rh hydride dicarbonyl centres, only affording limited regioselectivity to n-butanal5-8. Here we show that proper encapsulation of Rh species comprising Rh(I)-gem-dicarbonyl centres within a MEL zeolite framework allows the breaking of the above model. The optimized catalyst exhibits more than 99% regioselectivity to n-butanal and more than 99% selectivity to aldehydes at a product formation turnover frequency (TOF) of 6,500 h-1, surpassing the performance of all heterogeneous and most homogeneous catalysts developed so far. Our comprehensive studies show that the zeolite framework can act as a scaffold to steer the reaction pathway of the intermediates confined in the space between the zeolite framework and Rh centres towards the exclusive formation of n-butanal.
RESUMO
The incorporation of multiple metal ions in metal-organic frameworks (MOFs) through one-pot synthesis can induce unique properties originating from specific atomic-scale spatial apportionment, but the extraction of this crucial information poses challenges. Herein, nondestructive solid-state NMR spectroscopy was used to discern the atomic-scale metal apportionment in a series of bulk Mg1-xCox-MOF-74 samples via identification and quantification of eight distinct arrangements of Mg/Co ions labeled with a 13C-carboxylate, relative to Co content. Due to the structural characteristics of metal-oxygen chains, the number of metal permutations is infinite for Mg1-xCox-MOF-74, making the resolution of atomic-scale metal apportionment particularly challenging. The results were then employed in density functional theory calculations to unravel the molecular mechanism underlying the macroscopic adsorption properties of several industrially significant gases. It is found that the incorporation of weak adsorption sites (Mg2+ for CO and Co2+ for CO2 adsorption) into the MOF structure counterintuitively boosts the gas adsorption energy on strong sites (Co2+ for CO and Mg2+ for CO2 adsorption). Such effect is significant even for Co2+ remote from Mg2+ in the metal-oxygen chain, resulting in a greater enhancement of CO adsorption across a broad composition range, while the enhancement of CO2 adsorption is restricted to Mg2+ with adjacent Co2+. Dynamic breakthrough measurements unambiguously verified the trend in gas adsorption as a function of metal composition. This research thus illuminates the interplay between atomic-scale structures and macroscopic gas adsorption properties in mixed-metal MOFs and derived materials, paving the way for developing superior functional materials.
RESUMO
BACKGROUND: Previous studies implied that local M2 polarization of macrophage promoted mucosal edema and exacerbated TH2 type inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the specific pathogenic role of M2 macrophages and the intrinsic regulators in the development of CRS remains elusive. OBJECTIVE: We sought to investigate the regulatory role of SIRT5 in the polarization of M2 macrophages and its potential contribution to the development of CRSwNP. METHODS: Real-time reverse transcription-quantitative PCR and Western blot analyses were performed to examine the expression levels of SIRT5 and markers of M2 macrophages in sinonasal mucosa samples obtained from both CRS and control groups. Wild-type and Sirt5-knockout mice were used to establish a nasal polyp model with TH2 inflammation and to investigate the effects of SIRT5 in macrophage on disease development. Furthermore, in vitro experiments were conducted to elucidate the regulatory role of SIRT5 in polarization of M2 macrophages. RESULTS: Clinical investigations showed that SIRT5 was highly expressed and positively correlated with M2 macrophage markers in eosinophilic polyps. The expression of SIRT5 in M2 macrophages was found to contribute to the development of the disease, which was impaired in Sirt5-deficient mice. Mechanistically, SIRT5 was shown to enhance the alternative polarization of macrophages by promoting glutaminolysis. CONCLUSIONS: SIRT5 plays a crucial role in promoting the development of CRSwNP by supporting alternative polarization of macrophages, thus providing a potential target for CRSwNP interventions.
Assuntos
Macrófagos , Camundongos Knockout , Pólipos Nasais , Rinite , Sinusite , Sirtuínas , Animais , Sinusite/imunologia , Sinusite/patologia , Sinusite/genética , Humanos , Doença Crônica , Macrófagos/imunologia , Macrófagos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Camundongos , Rinite/imunologia , Rinite/patologia , Rinite/genética , Pólipos Nasais/imunologia , Pólipos Nasais/patologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Eosinofilia/imunologia , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/genética , Camundongos Endogâmicos C57BL , Eosinófilos/imunologia , Células Th2/imunologia , RinossinusiteRESUMO
As tactile force sensing has become increasingly significant in the field of machine haptics, achieving multidimensional force sensing remains a challenge. We propose a 3D flexible force sensor that consists of an axisymmetric hemispherical protrusion and four equally sized quarter-circle electrodes. By simulating the device using a force and electrical field model, it has been found that the magnitude and direction of the force can be expressed through the voltage relationship of the four electrodes when the magnitude of the shear force remains constant and its direction varies within 0-360°. The experimental results show that a resolution of 15° can be achieved in the range 0-90°. Additionally, we installed the sensor on a robotic hand, enabling it to perceive the magnitude and direction of touch and grasp actions. Based on this, the designed 3D flexible tactile force sensor provides valuable insights for multidimensional force detection and applications.
RESUMO
Among various mRNA carrier systems, lipid nanoparticles (LNPs) stand out as the most clinically advanced. While current clinical trials of mRNA/LNP therapeutics mainly address liver diseases, the potential of mRNA therapy extends far beyondâyet to be unraveled. To fully unlock the promises of mRNA therapy, there is an urgent need to develop safe and effective LNP systems that can target extrahepatic organs. Here, we report on the development of sulfonium lipid nanoparticles (sLNPs) for systemic mRNA delivery to the lungs. sLNP effectively and specifically delivered mRNA to the lungs following intravenous administration in mice. No evidence of lung and systemic inflammation or toxicity in major organs was induced by sLNP. Our findings demonstrated that the newly developed lung-specific sLNP platform is both safe and efficacious. It holds great promise for advancing the development of new mRNA-based therapies for the treatment of lung-associated diseases and conditions.
Assuntos
Lipídeos , Pulmão , Nanopartículas , RNA Mensageiro , Animais , Pulmão/metabolismo , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/administração & dosagem , Lipídeos/química , Humanos , Compostos de Sulfônio/química , Técnicas de Transferência de Genes , LipossomosRESUMO
BACKGROUND: Cumulative evidence suggests a correlation between physical or mental activity and the risk of stroke. However, the combined impact of these activities on stroke onset remains unexplored. This study identified physical and mental activity patterns using principal component analysis and investigated their associations with risk of incident stroke in the general population. METHODS: Our study was sourced from the UK Biobank cohort between 2006 and 2010. Information on physical and mental-related activities were obtained through a touch-screen questionnaire. The incident stroke was diagnosed by physicians and subsequently verified through linkage to Hospital Episode Statistics. Principal component analysis was used to identify potential physical and mental activity patterns. Cox proportional hazard regression models were performed to calculate hazard ratios (HRs) and 95% CIs of incident stroke, adjusting for potential confounders. RESULTS: The initial UK Biobank cohort originally consisted of 502â 411 individuals, of whom a total of 386â 902 participants (aged 38-79 years) without any history of stroke at baseline were included in our study. During a median follow-up of 7.7 years, 6983 (1.8%) cases of stroke were documented. The mean age of the included participants was 55.9 years, and the proportion of women was 55.1%. We found that multiple individual items related to physical and mental activity showed significant associations with risk of stroke. We identified 4 patterns of physical activity and 3 patterns of mental activity using principal component analysis. The adherence to activity patterns of vigorous exercise, housework, and walking predominant patterns were associated with a lower risk of stroke by 17% (HR, 0.83 [95% CI, 0.78-0.89]; 20% (HR, 0.80 [95% CI, 0.75-0.85]; and 20% (HR, 0.80 [95% CI, 0.75-0.86), respectively. Additionally, the transportation predominant pattern (HR, 1.36 [95% CI, 1.28-1.45) and watching TV pattern (HR, 1.43 [95% CI, 1.33-1.53) were found to be significantly associated with a higher risk of stroke. These associations remained consistent across all subtypes of stroke. CONCLUSIONS: Activity patterns mainly related to frequent vigorous exercise, housework, and walking were associated with lower risks of stroke and all its subtypes. Our findings provide new insights for promoting suitable patterns of physical and mental activity for primary prevention of stroke.
RESUMO
Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.
Assuntos
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aspergillus oryzae/enzimologia , Aspergillus oryzae/metabolismo , Família Multigênica , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismoRESUMO
OBJECTIVE: Peripheral immune markers have been associated with the progression and prognosis of amyotrophic lateral sclerosis (ALS). However, whether dysregulation of peripheral immunity is a risk factor for ALS or a consequence of motor neuron degeneration has not yet been clarified. We aimed to identify longitudinal associations between prediagnostic peripheral immunity and the risk of incident ALS. METHODS: A total of 345,000 individuals from the UK Biobank between 2006 and 2010 were included at the baseline. The counts of peripheral immune markers (neutrophils, lymphocytes, monocytes, platelets, and CRP) and its derived metrics (neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio [PLR], lymphocyte-to-monocyte ratio [LMR], and systemic immune-inflammation index [SII]) were analyzed in relation to the following incident ALS by Cox proportional hazard models. Subgroup and interaction analyses were performed to explore the covariates of these relationships further. RESULTS: After adjusting for all covariates, the multivariate analysis showed that high neutrophil counts and their derived metrics (NLR and SII) were associated with an increased risk of ALS incidence (per SD increment hazard ratio [HR] = 1.15, 95% confidence interval [CI] = 1.02-1.29 for neutrophils; HR = 1.15, 95% CI = 1.03-1.28 for NLR; and HR = 1.17, 95% CI = 1.05-1.30 for SII). Subgroup and interaction analyses revealed that body mass index (BMI) and age had specific effects on this association. In participants with BMI ≥ 25 or age < 65 years, higher neutrophil counts, and their metrics increased the risk of incident ALS; however, in participants with BMI < 25 or age ≥ 65 years, neutrophils had no effect on incident ALS. INTERPRETATION: Our study provides evidence that increased neutrophil levels and neutrophil-derived metrics (NLR and SII) are associated with an increased risk of developing ALS. ANN NEUROL 2023;94:942-954.
Assuntos
Esclerose Lateral Amiotrófica , Neutrófilos , Humanos , Idoso , Esclerose Lateral Amiotrófica/epidemiologia , Índice de Massa Corporal , Linfócitos , Prognóstico , Biomarcadores , Estudos Retrospectivos , InflamaçãoRESUMO
The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.
Assuntos
Diferenciação Celular , Epiderme , Queratinócitos , Metabolismo dos Lipídeos , Receptores Citoplasmáticos e Nucleares , Humanos , Epiderme/metabolismo , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , PermeabilidadeRESUMO
The landscape of cell-surface signaling is formidably complex. Robust tools capable of manipulating the spatiotemporal distribution of cell-surface proteins (CSPs) for dissecting signaling are in high demand. Some CSPs are regulated via multivalency-driven liquid-liquid phase separation (LLPS). Employing the robustness and versatility of LLPS, we decided to engineer LLPS-based tools for precisely manipulating CSPs. We generated membrane-tethering LLPS systems by fusing multivalent modular phase-separation scaffold pairs with CSP binders. Phase separation of the scaffold pairs, concomitant compartmentalization of CSPs on membranes, and cluster-dependent signaling outputs of CSPs require membrane recruitment of one or both scaffolds. We also engineered orthogonal phase-separation systems to segregate CSPs into mutually exclusive compartments. The engineered phase-separation systems can robustly cluster individual CSPs, co-cluster two or more CSPs, or segregate different CSPs into distinct compartments on cell surfaces. These tools will enable the dissection of complicated cell-signaling landscapes with high precision.
Assuntos
Proteínas de Membrana , Transdução de Sinais , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismoRESUMO
BACKGROUND: Previous studies on physical activity (PA) and pelvic organ prolapse (POP) were largely limited to self-reported PA in athletes, soldiers, and women in postpartum. We aimed to investigate the association of accelerometer-measured PA and sedentary behavior with the risk of POP in middle-aged and elderly women. METHODS: In this prospective cohort derived from the UK Biobank, the intensity and duration of PA and sedentary behavior were measured with wrist-worn accelerometers over a 7-day period in 2013-2015 for 47,674 participants (aged 42.8-77.9 years) without pre-existing POP. Participants were followed up until the end of 2022, during which incident POP was ascertained mainly by the electronic health records. Multivariable-adjusted Cox proportional hazards models and restricted cubic splines were used to assess the associations of interest. Isotemporal substitution models were applied to test the effects of substituting a type of activity with equivalent duration of others. RESULTS: During a median follow-up of 8.0 years, 779 cases of POP were recorded. The duration of light-intensity PA (LPA) was positively whereas sedentary time was negatively associated with the risk of POP. Every additional 1 h/day of LPA elevated the risk of POP by 18% (95% confidence interval [CI], 10%-26%). In contrast, the risk decreased by 5% (95% CI, 0-8%) per 1 h/day increment in sedentary behavior. No associations were found between moderate-intensity PA (MPA) or vigorous-intensity PA (VPA) and POP, except that women who had a history of hysterectomy were more likely to develop POP when performing more VPA (53% higher risk for every additional 15 min/day). Substituting 1 h/day of LPA with equivalent sedentary time was associated with a 18% (95% CI, 11%-24%) lower risk of POP. The risk can also be reduced by 17% (95% CI, 7%-25%) through substituting 30 min/day of LPA with MPA. CONCLUSIONS: More time spent in LPA or less sedentary time was linked to an elevated risk of POP in middle-aged and elderly women, while MPA or VPA was not. Substituting LPA with equivalent duration of sedentary behavior or MPA may lower the risk of POP.
Assuntos
Comportamento Sedentário , Biobanco do Reino Unido , Idoso , Pessoa de Meia-Idade , Humanos , Feminino , Estudos Prospectivos , Bancos de Espécimes Biológicos , Acelerometria , Exercício FísicoRESUMO
OBJECTIVES: This study aimed to assess the efficacy and safety of monoclonal antibody therapies (MATs) for interstitial cystitis/bladder pain syndrome (IC/BPS). METHODS: A systematic search was conducted across databases including PubMed, Embase, clinicalTrial.gov, and the Cochrane Library Central Register of Controlled Trials. Randomized controlled trials (RCTs) comparing MATs versus placebo were included. Primary outcomes comprised the Global Response Assessment (GRA) scale and the O'Leary-Sant Interstitial Cystitis Symptom Index (ICSI). Additional analyses encompassed mean daily frequency of voids, the O'Leary-Sant Interstitial Cystitis Problem Index, pain scores, and complications. Statistical analyses were performed using Review Manager 5.3. RESULTS: Five high-quality RCTs, comprising 263 patients with IC/BPS, were ultimately selected. MATs were generally effective in treating IC/BPS. Patients receiving MATs exhibited a higher satisfaction rate (odds ratio [OR]: 2.7, confidence interval [CI]: 1.31-5.58, p = 0.007) and lower ICSI scores (mean difference [MD]: -1.44, CI: -2.36 to -0.52, p = 0.002). Moreover, MAT recipients experienced reduced pain (MD: -0.53, CI: -0.79 to -0.26, p < 0.0001) and decreased frequency of urination (MD: -1.91, CI: -2.55 to -1.27, p < 0.00001). Importantly, there were no disparities regarding complication incidence in the MAT and control groups. CONCLUSIONS: The current findings indicate that MATs are effective and safe for treating IC/BPS. Nonetheless, future RCTs with larger sample sizes and long-term follow-up are warranted.
Assuntos
Anticorpos Monoclonais , Cistite Intersticial , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Cistite Intersticial/tratamento farmacológico , Cistite Intersticial/fisiopatologia , Cistite Intersticial/imunologia , Resultado do Tratamento , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Medição da Dor , Feminino , Razão de ChancesRESUMO
BACKGROUND: Accurate breed identification is essential for the conservation and sustainable use of indigenous farm animal genetic resources. In this study, we evaluated the phylogenetic relationships and genomic breed compositions of 13 sheep breeds using SNP and InDel data from whole genome sequencing. The breeds included 11 Chinese indigenous and 2 foreign commercial breeds. We compared different strategies for breed identification with respect to different marker types, i.e. SNPs, InDels, and a combination of SNPs and InDels (named SIs), different breed-informative marker detection methods, and different machine learning classification methods. RESULTS: Using WGS-based SNPs and InDels, we revealed the phylogenetic relationships between 11 Chinese indigenous and two foreign sheep breeds and quantified their purities through estimated genomic breed compositions. We found that the optimal strategy for identifying these breeds was the combination of DFI_union for breed-informative marker detection, which integrated the methods of Delta, Pairwise Wright's FST, and Informativeness for Assignment (namely DFI) by merging the breed-informative markers derived from the three methods, and KSR for breed assignment, which integrated the methods of K-Nearest Neighbor, Support Vector Machine, and Random Forest (namely KSR) by intersecting their results. Using SI markers improved the identification accuracy compared to using SNPs or InDels alone. We achieved accuracies over 97.5% when using at least the 1000 most breed-informative (MBI) SI markers and even 100% when using 5000 SI markers. CONCLUSIONS: Our results provide not only an important foundation for conservation of these Chinese local sheep breeds, but also general approaches for breed identification of indigenous farm animal breeds.
Assuntos
Cruzamento , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Ovinos , Animais , Cruzamento/métodos , China , Genética Populacional/métodos , Filogenia , Ovinos/genética , Sequenciamento Completo do Genoma/métodos , Sequenciamento Completo do Genoma/veterináriaRESUMO
Rho-associated coiled-coil kinase (ROCK) is involved in multiple cellular activities regulating the actin cytoskeleton, such as cell morphology, adhesion, and migration. The inhibition of ROCK is a feasible strategy to suppress breast cancer metastasis. Herein, based on Belumosudil, a series of pyrazolo[1,5-a]pyrimidine derivatives as selective ROCK2 inhibitors were designed and synthesized. Through systematic investigation of SARs, the piperazine analog 7u was identified with optimum ROCK2 inhibitory activity (IC50 = 36.8 nM) and excellent selectivity over the isoform protein ROCK1 (>250-fold). Intriguingly, upon treatment with 7u, the arrangement of the MDA-MB-231 cytoskeleton was affected accompanied by the alteration of morphology. Furthermore, cell scratch and transwell assays indicated that 7u inhibited MDA-MB-231 cell migration and invasion in a dose-dependent manner. Ultimately, the binding model of 7u with ROCK2 well accounted for the superior activities of 7u as a promising ROCK2 inhibitor with the potential application in breast cancer metastasis treatment.
Assuntos
Antineoplásicos , Neoplasias da Mama , Movimento Celular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Pirazóis , Pirimidinas , Quinases Associadas a rho , Humanos , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Movimento Celular/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Feminino , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Descoberta de Drogas , Simulação de Acoplamento MolecularRESUMO
BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets, which has brought huge economic losses to the pork industry worldwide since its first discovery in the early 1970s in Europe. Passive immunization with neutralizing antibodies against PEDV is an effective prevention measure. To date, there are no effective therapeutic drugs to treat the PEDV infection. RESULTS: We conducted a screening of specific nanobodies against the S1 protein from a phage display library obtained from immunized alpacas. Through competitive binding to antigenic epitopes, we selected instead of chose nanobodies with high affinity and constructed a multivalent tandem. These nanobodies were shown to inhibit PEDV infectivity by the neutralization assay. The antiviral capacity of nanobody was found to display a dose-dependent pattern, as demonstrated by IFA, TCID50, and qRT-PCR analyses. Notably, biparatopic nanobody SF-B exhibited superior antiviral activity. Nanobodies exhibited low cytotoxicity and high stability even under harsh temperature and pH conditions, demonstrating their potential practical applicability to animals. CONCLUSIONS: Nanobodies exhibit remarkable biological properties and antiviral effects, rendering them a promising candidate for the development of anti-PEDV drugs.
Assuntos
Anticorpos Neutralizantes , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Anticorpos de Domínio Único , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Células VeroRESUMO
OBJECTIVE: Non-small cell lung cancer (NSCLC) patients undergoing chemotherapy and immunotherapy experience disturbances in the gut microbiota. This study intends to find out the correlation between gut microbiota and clinical indices before and after radiotherapy for NSCLC. METHODS: Ten patients with primary NSCLC were screened, and plasma and fecal samples were collected before and after radiotherapy, respectively. Inflammatory indices in plasma were detected. Genomic DNA was extracted from fecal specimens and sequenced on on Illumina HiSeq2000 sequencing platform. Thee sequenced data were subjected to Metagenome assembly, gene prediction, species annotation, and gene function analysis to study and analyze gut microbiota and metabolic functions. The correlation between the diversity of gut microbiota and the clinical indicators of NSCLC patients was evaluated, and the changes of gut microbiota before and after radiotherapy were observed. RESULTS: The diversity of gut microbiota in NSCLC patients did not correlate with smoking, pathology, and inflammatory markers. The abundance of phylum (p)_Bacteroidetes increased; p_Firmicutes and p_Bacteroidetes accounted for the highest proportion in NSCLC patients, and the abundance of both was dominantly exchanged after radiotherapy. There was a decrease in genus (g)_Bifidobacterium after radiotherapy in NSCLC patients. There was no significant correlation between the diversity of gut microbiota after radiotherapy and radiotherapy sensitivity, and the structural composition and abundance of gut microbiota remained stable. CONCLUSION: The diversity of gut microbiota is altered after radiotherapy in NSCLC patients, showing an increase in harmful bacteria and a decrease in beneficial bacteria.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/microbiologia , Masculino , Pessoa de Meia-Idade , Feminino , Fezes/microbiologia , Idoso , Metagenoma , Metagenômica/métodos , Bactérias/genética , Bactérias/classificaçãoRESUMO
Organophosphorus flame retardants, such as triphenyl phosphate (TPhP), exist ubiquitously in various environments owing to their widespread usage. Potential toxic effects of residual flame retardants on cultured non-fish species are not concerned commonly. TPhP-induced physiological and biochemical effects in an aquatic turtle were evaluated here by systematically investigating the changes in growth and locomotor performance, hepatic antioxidant ability and metabolite, and intestinal microbiota composition of turtle hatchlings after exposure to different TPhP concentrations. Reduced locomotor ability and antioxidant activity were only observed in the highest concentration group. Several metabolic perturbations that involved in amino acid, energy and nucleotide metabolism, in exposed turtles were revealed by metabolite profiles. No significant among-group difference in intestinal bacterial diversity was observed, but the composition was changed markedly in exposed turtles. Increased relative abundances of some bacterial genera (e.g., Staphylococcus, Vogesella and Lawsonella) probably indicated adverse outcomes of TPhP exposure. Despite having only limited impacts of exposure at environmentally relevant levels, our results revealed potential ecotoxicological risks of residual TPhP for aquatic turtles considering TPhP-induced metabolic perturbations and intestinal bacterial changes.
Assuntos
Retardadores de Chama , Microbioma Gastrointestinal , Fígado , Organofosfatos , Tartarugas , Poluentes Químicos da Água , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluentes Químicos da Água/toxicidade , Retardadores de Chama/toxicidade , Organofosfatos/toxicidade , Bactérias/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Antioxidantes/metabolismoRESUMO
Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.
Assuntos
Chalconas , Sirtuína 2 , Neoplasias de Mama Triplo Negativas , Humanos , Sirtuína 2/farmacologia , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína)/farmacologia , Tubulina (Proteína)/uso terapêutico , Proliferação de Células , ApoptoseRESUMO
BACKGROUND: The most challenging aspect of rehabilitation is the repurposing of residual functional plasticity in stroke patients. To achieve this, numerous plasticity-based clinical rehabilitation programs have been developed. This study aimed to investigate the effects of motor imagery (MI)-based brain-computer interface (BCI) rehabilitation programs on upper extremity hand function in patients with chronic hemiplegia. DESIGN: A 2010 Consolidated Standards for Test Reports (CONSORT)-compliant randomized controlled trial. METHODS: Forty-six eligible stroke patients with upper limb motor dysfunction participated in the study, six of whom dropped out. The patients were randomly divided into a BCI group and a control group. The BCI group received BCI therapy and conventional rehabilitation therapy, while the control group received conventional rehabilitation only. The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score was used as the primary outcome to evaluate upper extremity motor function. Additionally, functional magnetic resonance imaging (fMRI) scans were performed on all patients before and after treatment, in both the resting and task states. We measured the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), z conversion of ALFF (zALFF), and z conversion of ReHo (ReHo) in the resting state. The task state was divided into four tasks: left-hand grasping, right-hand grasping, imagining left-hand grasping, and imagining right-hand grasping. Finally, meaningful differences were assessed using correlation analysis of the clinical assessments and functional measures. RESULTS: A total of 40 patients completed the study, 20 in the BCI group and 20 in the control group. Task-related blood-oxygen-level-dependent (BOLD) analysis showed that when performing the motor grasping task with the affected hand, the BCI group exhibited significant activation in the ipsilateral middle cingulate gyrus, precuneus, inferior parietal gyrus, postcentral gyrus, middle frontal gyrus, superior temporal gyrus, and contralateral middle cingulate gyrus. When imagining a grasping task with the affected hand, the BCI group exhibited greater activation in the ipsilateral superior frontal gyrus (medial) and middle frontal gyrus after treatment. However, the activation of the contralateral superior frontal gyrus decreased in the BCI group relative to the control group. Resting-state fMRI revealed increased zALFF in multiple cerebral regions, including the contralateral precentral gyrus and calcarine and the ipsilateral middle occipital gyrus and cuneus, and decreased zALFF in the ipsilateral superior temporal gyrus in the BCI group relative to the control group. Increased zReHo in the ipsilateral cuneus and contralateral calcarine and decreased zReHo in the contralateral middle temporal gyrus, temporal pole, and superior temporal gyrus were observed post-intervention. According to the subsequent correlation analysis, the increase in the FMA-UE score showed a positive correlation with the mean zALFF of the contralateral precentral gyrus (r = 0.425, P < 0.05), the mean zReHo of the right cuneus (r = 0.399, P < 0.05). CONCLUSION: In conclusion, BCI therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. The correlation of the zALFF of the contralateral precentral gyrus and the zReHo of the ipsilateral cuneus with motor improvements suggested that these values can be used as prognostic measures for BCI-based stroke rehabilitation. We found that motor function was related to visual and spatial processing, suggesting potential avenues for refining treatment strategies for stroke patients. TRIAL REGISTRATION: The trial is registered in the Chinese Clinical Trial Registry (number ChiCTR2000034848, registered July 21, 2020).
Assuntos
Interfaces Cérebro-Computador , Imagens, Psicoterapia , Imageamento por Ressonância Magnética , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Extremidade Superior , Humanos , Masculino , Reabilitação do Acidente Vascular Cerebral/métodos , Feminino , Pessoa de Meia-Idade , Extremidade Superior/fisiopatologia , Imagens, Psicoterapia/métodos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Idoso , Adulto , Imaginação/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologiaRESUMO
OBJECTIVE: To evaluate the feasibility, safety and efficacy of robot-assisted laparoscopic modified ureteroplasty using a lingual mucosa graft (LMG) or an appendiceal flap (AF) for complex ureteral strictures and summarize our experience. METHODS: A total of 16 patients with complex ureteral strictures (range: 1.5-5 cm) who underwent robotic-assisted laparoscopic-modified ureteroplasty and were admitted to our hospital from May 2022-October 2023 were retrospectively analyzed. We used modified presuture methods in patients who needed the posteriorly augmented anastomotic technique to reduce anastomotic tension. Perioperative variables and outcomes were recorded for each patient. RESULTS: The operation under robot-assisted laparoscopy was successfully performed in all sixteen patients (12 with LMG ureteroplasty and 4 with AF ureteroplasty) without conversion to open surgery. The mean length of the ureteral structure was 2.90 ± 0.90 cm (range: 1.5-5 cm), the mean operation duration was 209.69 ± 26.74 min (range: 170-255 min), the median estimated blood loss was 75 (62.5) ml (range: 50-200 ml), and the duration of postoperative hospitalization was 10.44 ± 2.10 d (range: 7-14 d). The follow-up time in this group was 6 ~ 21 months. The success rate of the surgery was 100%. CONCLUSION: Robot-assisted laparoscopic modified ureteroplasty using AF or LMG is a safe and feasible operation for complex ureteral strictures and deserves to be popularized.